History of haematopoietic stem-cell transplantation


After fifty years of investigations into the use of pluripotent haematopoietic stem-cell transplantation for cancer therapy, this procedure has progressed from one that was thought to be plagued with insurmountable complications to a standard treatment for many haematological malignancies. How have these hurdles been overcome, and how can the therapy be expanded to include patients who are too old or medically infirm to tolerate conventional transplant approaches?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Nobel prize for stem-cell transplantation.
Figure 2: Non-myeloablative approaches to bone-marrow transplantation.


  1. 1

    Jacobson, L. O., Marks, E. K., Robson, M. J., Gaston, E. O. & Zirkle, R. E. Effect of spleen protection on mortality following X-irradiation. J. Lab. Clin. Med. 34, 1538–1543 (1949).

    Google Scholar 

  2. 2

    Lorenz, E., Uphoff, D., Reid, T. R. & Shelton, E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl Cancer Inst. 12, 197–201 (1951).

    CAS  PubMed  Google Scholar 

  3. 3

    van Bekkum, D. W. & de Vries, M. J. Radiation Chimaeras (ed. Rijswijk, Z. H.) (Logos Press Limited, London, 1967).

  4. 4

    Barnes, D. W. H. & Loutit, J. F. What is the recovery factor in spleen? Nucleonics 12, 68–71 (1954).

    Google Scholar 

  5. 5

    Main, J. M. & Prehn, R. T. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J. Natl Cancer Inst. 15, 1023–1029 (1955).

    CAS  PubMed  Google Scholar 

  6. 6

    Trentin, J. J. Mortality and skin transplantability in X-irradiated mice receiving isologous or heterologous bone marrow. Proc. Soc. Exp. Biol. Med. 92, 688–693 (1956).

    CAS  PubMed  Google Scholar 

  7. 7

    Ford, C. E., Hamerton, J. L., Barnes, D. W. H. & Loutit, J. F. Cytological identification of radiation-chimaeras. Nature 177, 452–454 (1956).

    CAS  PubMed  Google Scholar 

  8. 8

    Nowell, P. C., Cole, L. J., Habermeyer, J. G. & Roan, P. L. Growth and continued function of rat marrow cells in X-radiated mice. Cancer Res. 16, 258–261 (1956).

    CAS  PubMed  Google Scholar 

  9. 9

    Woodruff, M. F. A. . The Transplantation of Tissues and Organs (Charles C. Thomas, Springfield, Illinois, 1960).

    Google Scholar 

  10. 10

    Brent, L. A History of Transplantation Immunology (Academic, San Diego, 1997).

    Google Scholar 

  11. 11

    Thomas, E. D. & Storb, R. in Hematopoietic Cell Transplantation 2nd edn (eds Thomas, E. D., Blume, K. G. & Forman, S. J.) 1–11 (Blackwell Science, Boston, 1999).

    Google Scholar 

  12. 12

    Thomas, E. D. & Blume, K. G. Historical markers in the development of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 5, 341–346 (1999).

    CAS  PubMed  Google Scholar 

  13. 13

    Thomas, E. D., Lochte, H. L. Jr, Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    CAS  PubMed  Google Scholar 

  14. 14

    Thomas, E. D., Lochte, H. L. Jr, Cannon, J. H., Sahler, O. D. & Ferrebee, J. W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Invest. 38, 1709–1716 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Barnes, D. W. H., Corp, M. J., Loutit, J. F. & Neal, F. E. Treatment of murine leukaemia with X-rays and homologous bone marrow. BMJ 2, 626–627 (1956).

    CAS  PubMed  Google Scholar 

  16. 16

    Mathé, G., Amiel, J. L., Schwarzenberg, L., Catton, A. & Schneider, M. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res. 25, 1525–1531 (1965).

    PubMed  Google Scholar 

  17. 17

    Andrews, G. A. Criticality accidents in Vinca, Yugoslavia, and Oak Ridge Tennessee. Am. J. Roentgenol. Radium Ther. Nucl. Med. 93, 56–74 (1965).

    CAS  PubMed  Google Scholar 

  18. 18

    McGovern, J. J. Jr, Russel, P. S., Atkins, L. & Webster, E. W. Treatment of terminal leukemic relapse by total-body irradiation and intravenous infusion of stored autologous bone marrow obtained during remission. N. Engl. J. Med. 260, 675–683 (1959).

    PubMed  Google Scholar 

  19. 19

    Beilby, J. O., Cade, I. S., Jeliffe, A. M., Parkin, D. M. & Stewart, J. W. Prolonged survival of a bone-marrow graft resulting in a blood group chimera. BMJ 1, 96–99 (1960).

    CAS  PubMed  Google Scholar 

  20. 20

    Thomas, E. D. et al. Bone-marrow transplantation. N. Engl. J. Med. 292, 832–843, 895–902 (1975).

    CAS  PubMed  Google Scholar 

  21. 21

    Santos, G. W. Busulfan (Bu) and cyclophosphamide (Cy) for marrow transplantation. Bone Marrow Transplant. 4, 236–239 (1989).

    PubMed  Google Scholar 

  22. 22

    Mannick, J. A., Lochte, H. L. Jr, Ashley, C. A., Thomas, E. D. & Ferrebee, J. W. Autografts of bone marrow in dogs after lethal total-body radiation. Blood 15, 255–266 (1960).

    CAS  PubMed  Google Scholar 

  23. 23

    Cavins, J. A., Kasakura, S., Thomas, E. D. & Ferrebee, J. W. Recovery of lethally irradiated dogs following infusion of autologous marrow stored at low temperature in dimethyl-sulphoxide. Blood 20, 730–734 (1962).

    CAS  PubMed  Google Scholar 

  24. 24

    Thomas, E. D., LeBlond, R., Graham, T. & Storb, R. Marrow infusions in dogs given midlethal or lethal irradiation. Radiat. Res. 41, 113–124 (1970).

    CAS  PubMed  Google Scholar 

  25. 25

    Storb, R., Rudolph, R. H. & Thomas, E. D. Marrow grafts between canine siblings matched by serotyping and mixed leukocyte culture. J. Clin. Invest. 50, 1272–1275 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Storb, R. et al. What radiation dose for DLA-identical canine marrow grafts? Blood 72, 1300–1304 (1988).

    CAS  PubMed  Google Scholar 

  27. 27

    Storb, R. & Deeg, H. J. Failure of allogeneic canine marrow grafts after total body irradiation: allogeneic 'resistance' vs transfusion induced sensitization. Transplantation 42, 571–580 (1986).

    CAS  PubMed  Google Scholar 

  28. 28

    Bodenberger, U. et al. Fractionated total body irradiation and autologous bone marrow transplantation in dogs: hemopoietic recovery after various marrow cell doses. Exp. Hematol. 8, 384–394 (1980).

    CAS  PubMed  Google Scholar 

  29. 29

    Deeg, H. J. et al. Single dose or fractionated total body irradiation and autologous marrow transplantation in dogs: effects of exposure rate, fraction size and fractionation interval on acute and delayed toxicity. Int. J. Radiat. Oncol. Biol. Phys. 15, 647–653 (1988).

    CAS  PubMed  Google Scholar 

  30. 30

    Storb, R. et al. Comparison of fractionated to single-dose total body irradiation in conditioning canine littermates for DLA-identical marrow grafts. Blood 74, 1139–1143 (1989).

    CAS  PubMed  Google Scholar 

  31. 31

    Cavins, J. A., Scheer, S. C., Thomas, E. D. & Ferrebee, J. W. The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at 80°C. Blood 23, 38–43 (1964).

    CAS  PubMed  Google Scholar 

  32. 32

    Storb, R., Epstein, R. B., Ragde, H. & Thomas, E. D. Marrow engraftment by allogeneic leukocytes in lethally irradiated dogs. Blood 30, 805–811 (1967).

    CAS  PubMed  Google Scholar 

  33. 33

    Körbling, M. et al. Albumin density gradient purification of canine hemopoietic blood stem cells (HBSC): long-term allogeneic engraftment without GVH-reaction. Exp. Hematol. 7, 277–288 (1979).

    PubMed  Google Scholar 

  34. 34

    Snell, G. D. The Nobel Lectures in Immunology. Lecture for the Nobel Prize for Physiology or Medicine, 1980: studies in histocompatibility. Scand. J. Immunol. 36, 513–526 (1992).

    CAS  PubMed  Google Scholar 

  35. 35

    Epstein, R. B., Storb, R., Ragde, H. & Thomas, E. D. Cytotoxic typing antisera for marrow grafting in littermate dogs. Transplantation 6, 45–58 (1968).

    CAS  PubMed  Google Scholar 

  36. 36

    Deeg, H. J. et al. Joint Report of the Third International Workshop on Canine Immunogenetics. I. Analysis of homozygous typing cells. Transplantation 41, 111–117 (1986).

    CAS  PubMed  Google Scholar 

  37. 37

    Bull, R. W. et al. Joint Report of the Third International Workshop on Canine Immunogenetics. II. Analysis of the serological typing of cells. Transplantation 43, 154–161 (1987).

    CAS  PubMed  Google Scholar 

  38. 38

    Wagner, J. L., Burnett, R. C., Works, J. D. & Storb, R. Molecular analysis of DLA-DRBB1 polymorphism. Tissue Antigens 48, 554–561 (1996).

    CAS  PubMed  Google Scholar 

  39. 39

    Burnett, R. C., DeRose, S. A., Wagner, J. L. & Storb, R. Molecular analysis of six dog leukocyte antigen class I sequences including three complete genes, two truncated genes, and one full-length processed gene. Tissue Antigens 49, 484–495 (1997).

    CAS  PubMed  Google Scholar 

  40. 40

    Storb, R., Epstein, R. B., Graham, T. C. & Thomas, E. D. Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts. Transplantation 9, 240–246 (1970).

    CAS  PubMed  Google Scholar 

  41. 41

    Storb, R. & Thomas, E. D. Graft-versus-host disease in dog and man: the Seattle experience. Immunol. Rev. 88, 215–238 (1985).

    CAS  PubMed  Google Scholar 

  42. 42

    Uphoff, D. E. Alteration of homograft reaction by A-methopterin in lethally irradiated mice treated with homologous marrow. Proc. Soc. Exp. Biol. Med. 99, 651–653 (1958).

    CAS  PubMed  Google Scholar 

  43. 43

    Thomas, E. D., Collins, J. A., Herman, E. C. Jr & Ferrebee, J. W. Marrow transplants in lethally irradiated dogs given methotrexate. Blood 19, 217–228 (1962).

    CAS  PubMed  Google Scholar 

  44. 44

    Lochte, H. L. Jr, Levy, A. S., Guenther, D. M., Thomas, E. D. & Ferrebee, J. W. Prevention of delayed foreign marrow reaction in lethally irradiated mice by early administration of methotrexate. Nature 196, 1110–1111 (1962).

    CAS  PubMed  Google Scholar 

  45. 45

    Deeg, H. J. et al. Cyclosporin A and methotrexate in canine marrow transplantation: engraftment, graft-versus-host disease, and induction of tolerance. Transplantation 34, 30–35 (1982).

    CAS  PubMed  Google Scholar 

  46. 46

    Deeg, H. J. et al. Combined immunosuppression with cyclosporine and methotrexate in dogs given bone marrow grafts from DLA-haploidentical littermates. Transplantation 37, 62–65 (1984).

    CAS  PubMed  Google Scholar 

  47. 47

    Storb, R. et al. FK506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated DLA-nonidentical donors. Transplantation 56, 800–807 (1993).

    CAS  PubMed  Google Scholar 

  48. 48

    Tsoi, M.-S. et al. Canine marrow transplantation: are serum blocking factors necessary to maintain the stable chimeric state? J. Immunol. 114, 531–539 (1975).

    CAS  PubMed  Google Scholar 

  49. 49

    Atkinson, K. et al. In vitro tests correlating with presence or absence of graft-vs-host disease in DLA nonidentical canine radiation chimeras: evidence that clonal abortion maintains stable graft-host tolerance. J. Immunol. 124, 1808–1814 (1980).

    CAS  PubMed  Google Scholar 

  50. 50

    Deeg, H. J., Atkinson, K., Weiden, P. L. & Storb, R. Mechanisms of tolerance in canine radiation chimeras. Transplant. Proc. 19 (Suppl. 7), 75–81 (1987).

    CAS  PubMed  Google Scholar 

  51. 51

    Weiden, P. L. et al. Infusion of donor lymphocytes into stable canine radiation chimeras: implications for mechanism of transplantation tolerance. J. Immunol. 116, 1212–1219 (1976).

    CAS  PubMed  Google Scholar 

  52. 52

    Epstein, R. B., Storb, R., Clift, R. A. & Thomas, E. D. Autologous bone marrow grafts in dogs treated with lethal doses of cyclophosphamide. Cancer Res. 29, 1072–1075 (1969).

    CAS  PubMed  Google Scholar 

  53. 53

    Storb, R., Epstein, R. B., Rudolph, R. H. & Thomas, E. D. Allogeneic canine bone marrow transplantation following cyclophosphamide. Transplantation 7, 378–386 (1969).

    CAS  PubMed  Google Scholar 

  54. 54

    Santos, G. W. & Owens, A. H. Jr. Allogeneic marrow transplants in cyclophosphamide treated mice. Transplant. Proc. 1, 44–46 (1969).

    CAS  PubMed  Google Scholar 

  55. 55

    Thomas, E. D. et al. Allogeneic marrow grafting for hematologic malignancy using HL-A matched donor–recipient sibling pairs. Blood 38, 267–287 (1971).

    CAS  PubMed  Google Scholar 

  56. 56

    Santos, G. W. et al. Marrow transplantation in man following cyclophosphamide. Transplant. Proc. 3, 400–404 (1971).

    CAS  PubMed  Google Scholar 

  57. 57

    Storb, R., Buckner, C. D., Dillingham, L. A. & Thomas, E. D. Cyclophosphamide regimens in rhesus monkeys with and without marrow infusion. Cancer Res. 30, 2195–2203 (1970).

    CAS  PubMed  Google Scholar 

  58. 58

    Storb, R., Epstein, R. B., Bryant, J., Ragde, H. & Thomas, E. D. Marrow grafts by combined marrow and leukocyte infusions in unrelated dogs selected by histocompatibility typing. Transplantation 6, 587–593 (1968).

    CAS  PubMed  Google Scholar 

  59. 59

    Storb, R. et al. Marrow grafts between DL-A-matched canine littermates. Transplantation 15, 92–100 (1973).

    CAS  PubMed  Google Scholar 

  60. 60

    Storb, R., Prentice, R. L. & Thomas, E. D. Treatment of aplastic anemia by marrow transplantation from HLA identical siblings. Prognostic factors associated with graft versus host disease and survival. J. Clin. Invest. 59, 625–632 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Storb, R. et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N. Engl. J. Med. 314, 729–735 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Ratanatharathorn, V. et al. Phase III study comparing methotrexate and tacrolimus (Prograf, FK506) with methotrexate and cyclosporine for graft-versus-host-disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood 92, 2303–2314 (1998).

    CAS  PubMed  Google Scholar 

  63. 63

    Martin, P. J. et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 66, 664–672 (1985).

    CAS  PubMed  Google Scholar 

  64. 64

    Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).

    CAS  PubMed  Google Scholar 

  65. 65

    Goldman, J. M. et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T-cell depletion. Ann. Intern. Med. 108, 806–814 (1988).

    CAS  PubMed  Google Scholar 

  66. 66

    Aversa, F. et al. Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia. J. Clin. Oncol. 17, 1545–1550 (1999).

    CAS  PubMed  Google Scholar 

  67. 67

    Papadopoulos, E. B. et al. T-cell-depleted allogeneic bone marrow transplantation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host disease. Blood 91, 1083–1090 (1998).

    CAS  PubMed  Google Scholar 

  68. 68

    Mackinnon, S. et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86, 1261–1268 (1995).

    CAS  PubMed  Google Scholar 

  69. 69

    Thomas, E. D. et al. Cure of leukemia by marrow transplantation. Leuk. Res. 1, 67–70 (1977).

    Google Scholar 

  70. 70

    Thomas, E. D. et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood 49, 511–533 (1977).

    CAS  PubMed  Google Scholar 

  71. 71

    Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).

    CAS  Google Scholar 

  72. 72

    Sullivan, K. M. et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood 73, 1720–1728 (1989).

    CAS  PubMed  Google Scholar 

  73. 73

    Weiden, P. L. et al. Antileukemic effect of chronic graft-versus-host disease. Contribution to improved survival after allogeneic marrow transplantation. N. Engl. J. Med. 304, 1529–1533 (1981).

    CAS  PubMed  Google Scholar 

  74. 74

    Storb, R., Weiden, P. L., Graham, T. C., Lerner, K. G. & Thomas, E. D. Marrow grafts between unrelated dogs homozygous and identical for DLA antigens. Transplant. Proc. 9, 281–283 (1977).

    CAS  PubMed  Google Scholar 

  75. 75

    Martin, P. J. et al. Graft failure in patients receiving T cell-depleted HLA-identical allogeneic marrow transplants. Bone Marrow Transplant. 3, 445–456 (1988).

    CAS  PubMed  Google Scholar 

  76. 76

    Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    CAS  PubMed  Google Scholar 

  77. 77

    Fefer, A., et al. in Cellular Immunotherapy of Cancer (eds Truitt, R. L., Gale, R. P. & Bortin, M. M.) 401–408 (Alan R. Liss, Inc., New York, 1987).

    Google Scholar 

  78. 78

    Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    CAS  Google Scholar 

  79. 79

    Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86, 2041–2050 (1995).

    CAS  Google Scholar 

  80. 80

    Goulmy, E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol. Rev. 157, 125–140 (1997).

    CAS  PubMed  Google Scholar 

  81. 81

    Warren, E. H., Greenberg, P. D. & Riddell, S. R. Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 91, 2197–2207 (1998).

    CAS  PubMed  Google Scholar 

  82. 82

    Warren, E. H., Gavin, M., Greenberg, P. D. & Riddell, S. R. Minor histocompatibility antigens as targets for T-cell therapy after bone marrow transplantation. Curr. Opin. Hematol. 5, 429–433 (1998).

    CAS  PubMed  Google Scholar 

  83. 83

    Mutis, T. et al. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 93, 2336–2341 (1999).

    CAS  PubMed  Google Scholar 

  84. 84

    Reisner, Y. et al. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 2, 327–331 (1981).

    CAS  PubMed  Google Scholar 

  85. 85

    Prentice, H. G. et al. Depletion of T lymphocytes in donor marrow prevents significant graft-versus-host disease in matched allogeneic leukaemic marrow transplant recipients. Lancet 1, 472–476 (1984).

    CAS  PubMed  Google Scholar 

  86. 86

    Schmidt, G. M. et al. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants. N. Engl. J. Med. 324, 1005–1011 (1991).

    CAS  PubMed  Google Scholar 

  87. 87

    Goodrich, J. M. et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N. Engl. J. Med. 325, 1601–1607 (1991).

    CAS  PubMed  Google Scholar 

  88. 88

    Zaia, J. A. in Hematopoietic Cell Transplantation 2nd edn (eds Thomas, E. D., Blume, K. G. & Forman, S. J.) 560–583 (Blackwell Science, Boston, 1999).

    Google Scholar 

  89. 89

    Oudshoorn, M., van Leeuwen, A., vd Zanden, H. G. & van Rood, J. J. Bone Marrow Donors Worldwide: a successful exercise in international cooperation. Bone Marrow Transplant. 14, 3–8 (1994).

    CAS  PubMed  Google Scholar 

  90. 90

    Broxmeyer, H. E. et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl Acad. Sci. USA 86, 3828–3832 (1989).

    CAS  PubMed  Google Scholar 

  91. 91

    Gluckman, E. et al. Transplantation of umbilical cord blood in Fanconi's anemia. Nouv. Rev. Fr. Hematol. 32, 423–425 (1990).

    CAS  PubMed  Google Scholar 

  92. 92

    Rubinstein, P. et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl Acad. Sci. USA 92, 10119–10122 (1995).

    CAS  PubMed  Google Scholar 

  93. 93

    Gluckman, E. et al. Outcome of cord-blood transplantation from related and unrelated donors. N. Engl. J. Med. 337, 373–381 (1997).

    CAS  PubMed  Google Scholar 

  94. 94

    Juttner, C. A. et al. Early lympho-hemopoietic recovery after autografting using peripheral blood stem cells in acute non-lymphoblastic leukemia. Transplant. Proc. 20, 40–42 (1988).

    CAS  PubMed  Google Scholar 

  95. 95

    Gianni, A. M. et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 2, 580–585 (1989).

    CAS  PubMed  Google Scholar 

  96. 96

    Bensinger, W. I. et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85, 1655–1658 (1995).

    CAS  PubMed  Google Scholar 

  97. 97

    Korbling, M. & Champlin, R. Peripheral blood progenitor cell transplantation: a replacement for marrow auto- or allografts. Stem Cells 14, 185–195 (1996).

    CAS  PubMed  Google Scholar 

  98. 98

    Schmitz, N. et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347, 353–357 (1996).

    CAS  PubMed  Google Scholar 

  99. 99

    Bensinger, W. I. et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N. Engl. J. Med. 344, 175–181 (2001).

    CAS  PubMed  Google Scholar 

  100. 100

    Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    CAS  PubMed  Google Scholar 

  101. 101

    Ruggeri, L. et al. Kir epitope incompatibility in the GvH direction predicts control of leukemia relapse after mismatched hematopoietic transplantation. Bone Marrow Transplant. 27 (Suppl. 1), S11 (2001).

    Google Scholar 

  102. 102

    Ruggeri, L. et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94, 333–339 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Slavin, S. et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91, 756–763 (1998).

    CAS  PubMed  Google Scholar 

  104. 104

    Giralt, S. et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 89, 4531–4536 (1997).

    CAS  PubMed  Google Scholar 

  105. 105

    McSweeney, P. et al. Outpatient allografting with minimally myelosuppressive, immunosuppressive conditioning of low–dose TBI and postgrafting cyclosporine (CSP) and mycophenolate mofetil (MMF). Blood 94 (Suppl. 1), A393 (1999).

    Google Scholar 

  106. 106

    Feinstein, L. et al. Nonmyeloablative hematopoietic cell transplantation: replacing high-dose cytotoxic therapy by the graft-versus-tumor effect. Ann. NY Acad. Sci. 938, 328–339 (2001).

    CAS  PubMed  Google Scholar 

  107. 107

    McSweeney, P. A. et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97, 3390–3400 (2001).

    CAS  PubMed  Google Scholar 

  108. 108

    Khouri, I. F. et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J. Clin. Oncol. 16, 2817–2824 (1998).

    CAS  PubMed  Google Scholar 

  109. 109

    Storb, R., Yu, C. & McSweeney, P. in Hematopoietic Cell Transplantation 2nd edn (eds Thomas, E. D., Blume, K. G. & Forman, S. J.) 287–295 (Blackwell Science, Boston, 1999).

    Google Scholar 

  110. 110

    Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).

    CAS  PubMed  Google Scholar 

  111. 111

    Storb, R. et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. Blood 94, 1131–1136 (1999).

    CAS  PubMed  Google Scholar 

  112. 112

    Storb, R. et al. Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 94, 2523–2529 (1999).

    CAS  PubMed  Google Scholar 

  113. 113

    Appelbaum, F. R. Haematopoietic cell transplantation as immunotherapy. Nature 411, 385–389 (2001).

    CAS  PubMed  Google Scholar 

  114. 114

    Shipp, M. A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med. 8, 68–74 (2002).

    CAS  Google Scholar 

  115. 115

    Lan, F. et al. Predominance of NK1.1+TCR αβ+ or DX5+TCR αβ+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: 'natural suppressor' cells. J. Immunol. 167, 2087–2096 (2001).

    CAS  PubMed  Google Scholar 

  116. 116

    Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Fowler, D. H. & Gress, R. E. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk. Lymphoma 38, 221–234 (2000).

    CAS  PubMed  Google Scholar 

  118. 118

    Bortin, M. M. A compendium of reported human bone marrow transplants. Transplantation 9, 571–587 (1970).

    CAS  PubMed  Google Scholar 

  119. 119

    Vos, O., Davids, J. A. G., Weyzen, W. W. H. & van Bekkum, D. W. Evidence for cellular hypothesis in radiation protection by bone marrow cells. Acta Physiol. Pharmacol. Neerl. 4, 482–486 (1956).

    CAS  PubMed  Google Scholar 

  120. 120

    van Bekkum, D. W., Vos, O. & Weyzen, W. W. H. Homo- et hétérogreffe tissues hématopoiétiques chez la souris. Rev. Hémat. 11, 477–485 (1956).

    CAS  PubMed  Google Scholar 

  121. 121

    Billingham, R. E. & Brent, L. Quantitative studies on tissue transplantation immunity. IV. Induction of tolerance in newborn mice and studies on the phenomenon of runt disease. Phil. Trans. R. Soc. Lond. B 242, 477 (1959).

    Google Scholar 

  122. 122

    Uphoff, D. E. Genetic factors influencing irradiation protection by bone marrow. I. The F1 hybrid effect. J. Natl Cancer Inst. 19, 123–125 (1957).

    CAS  PubMed  Google Scholar 

  123. 123

    Ferrebee, J. W., Lochte, H. L. Jr, Jaretzki, A., Sahler, O. D. & Thomas, E. D. Successful marrow homograft in the dog after radiation. Surgery 43, 516–520 (1958).

    CAS  PubMed  Google Scholar 

  124. 124

    Goodman, J. W. & Hodgson, G. S. Evidence for stem cells in the peripheral blood of mice. Blood 19, 702–714 (1962).

    CAS  PubMed  Google Scholar 

  125. 125

    Good, R. A. et al. The role of thymus in development of immunologic capacity in rabbits and mice. J. Exp. Med. 116, 773–796 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Miller, J. F. Immunity and the thymus. Lancet 1, 43–45 (1963).

    Google Scholar 

  127. 127

    Cooper, M. D., Perey, D. Y., Peterson, R. D. A., Gabrielsen, A. E. & Good, R. A. in Immunologic Deficiency Disease in Man (eds Bergsma, D. & Good, R. A.) 175–197 (Lea & Febiger, Philadelphia, 1968).

    Google Scholar 

  128. 128

    Schwartz, R. S. & Beldotti, L. Malignant lymphomas following allogeneic disease: transition from an immunological to a neoplastic disorder. Science 149, 1511–1514 (1965).

    CAS  PubMed  Google Scholar 

  129. 129

    Malnin, T. I., Perry, V. P., Kerby, C. C. & Dolan, M. F. Peripheral leukocyte infusion into lethally irradiated guinea pigs. Blood 25, 693–702 (1996).

    Google Scholar 

  130. 130

    Epstein, R. B., Graham, T. C., Buckner, C. D., Bryant, J. & Thomas, E. D. Allogeneic marrow engraftment by cross circulation in lethally irradiated dogs. Blood 28, 692–707 (1966).

    CAS  PubMed  Google Scholar 

  131. 131

    Steinmuller, D. & Motulsky, A. G. Treatment of hereditary spherocytosis in peromyscus by radiation and allogeneic bone marrow transplantation. Blood 29, 320–330 (1967).

    CAS  PubMed  Google Scholar 

  132. 132

    Boak, J. L., Fox, M. & Wilson, R. E. Activity of lymphoid tissues from antilymphocyte-serum-treated mice. Lancet 1, 750–752 (1967).

    CAS  PubMed  Google Scholar 

  133. 133

    Brent, L., Courtenay, T. & Gowland, G. Immunological reactivity of lymphoid cells after tretment with anti-lymphocytic serum. Nature 215, 1461–1464 (1967).

    CAS  PubMed  Google Scholar 

  134. 134

    Graw, R. G. Jr et al. Bone marrow transplantation from HL-A-matched donors to patients with acute leukemia. Toxicity and antileukemic effect. Transplantation 14, 79–90 (1972).

    PubMed  Google Scholar 

  135. 135

    Bortin, M. M., Rimm, A. A., Saltzstein, E. C. & Rodey, G. E. Graft versus leukemia. III. Apparent independent antihost and antileukemic activity of transplanted immunocompetent cells. Transplantation 16, 182–188 (1973).

    CAS  PubMed  Google Scholar 

  136. 136

    Truitt, R. L., Johnson, B. D., McCabe, C. M. & Weiler, M. B. Graft versus Leukemia in Graft-vs-Host Disease 2nd edn (eds Ferrara, J. L. M., Deeg, H. J. & Burakoff, S. J.) 385–423 (Marcel Dekker, Inc., New York, 1997).

  137. 137

    Zinkernagel, R. & Doherty, P. C. MCH-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction specificity, function and responsiveness. Adv. Immunol. 27, 51–177 (1979).

    CAS  PubMed  Google Scholar 

  138. 138

    Fefer, A. et al. Disappearance of Ph1-positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N. Engl. J. Med. 300, 333–337 (1979).

    CAS  PubMed  Google Scholar 

  139. 139

    Storb, R. et al. Marrow transplantation with or without donor buffy coat cells for 65 transfused aplastic anemia patients. Blood 59, 236–246 (1982).

    CAS  PubMed  Google Scholar 

  140. 140

    Clift, R. A. et al. Treatment of chronic granulocytic leukaemia in chronic phase by allogeneic marrow transplantation. Lancet 2, 621–623 (1982).

    CAS  PubMed  Google Scholar 

  141. 141

    Goldman, J. M. et al. Marrow transplantation for patients in the chronic phase of chronic granulocytic leukaemia. Lancet 2, 623–625 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information



Related links

Related links



acute lymphoblastic leukaemia

breast cancer

chronic myelogenous leukaemia

colon cancer

Hodgkin's disease

pancreatic cancer

prostate cancer

 Medscape DrugInfo:







American Cancer Society web site

American Society of Cancer Oncology Online

American Society of Hematology web site

Bone Marrow Donors Worldwide (BMDW)

BMDW article


Fred Hutchinson Cancer Research Center

International Bone Marrow Transplant Registry

Seattle Cancer Care Alliance

World Marrow Donor Association



The transfer of haematopoietic cells that are anti-genically distinct or genetically different from one member of a species to another individual of the same species (such as from sister to brother or from an unrelated donor to a recipient).


A T-cell state of unresponsiveness, in which they cannot be activated by antigen.


The removal, storage and re-infusion of a patient's own haematopoietic stem cells.


Lack of cellular development in the bone marrow.


The CD34+ compartment constitutes a heterogeneous population of haematopoietic cells (approximately 1–4% of nucleated marrow and 0.1–0.2%of peripheral blood cells), which not only includes more committed lineage-restricted progenitors, but also primitive uncommitted progenitors that are capable of initiating long-term reconstitution of haematopoiesis.


A toxic reaction that is mediated by donor-derived T lymphocytes within the graft towards the recipient's organs. The attack is usually directed toward the skin, gut, liver and haematopoietic cells.


Killing of cancer cells that is mediated by the transplanted T lymphocyte cells or their progeny.


A primitive and immature cell of the haematopoietic system that has the capacity to give rise to all the cells of the blood system, as well as the ability to self-renew. Allogeneic haematopoietic stem-cell transplantation involves the transfer of both immature and mature blood cells from the bone marrow, peripheral blood or cord blood from one individual to another.


In the absence of immunosuppressive drugs, transplantation of haematopoietic cells between two dissimilar individuals universally results in an immune reaction that leads to graft rejection. This reactivity results from differences in cell-surface determinants, such as histocompatibility antigens between the transplant donor and the host. Histocompatibility is detemined by the presence of compatible human leukocyte antigens (HLA) that are present on the surface of cells.


Cellular proteins encoded by polymorphic genes that are differentially expressed on haematopoietic cells.


The presence of blood cells of both donor and host in origin within the recipient of the haematopoietic stem-cell transplant. Chimerism is operationally defined as the presence of 2.5–97.5% cells of donor or host origin, as dictated by the sensitivity of the assay that is used to detect chimerism.


(Or non-myeloablative). Minimally bone-marrow suppressive.


Transfer of haematopoietic cells between individuals who have identical genotypes (such as twins).


(TBI). Exposure of the entire body to radiant energy (external beam γ-irradiation) for therapeutic purposes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Little, MT., Storb, R. History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2, 231–238 (2002). https://doi.org/10.1038/nrc748

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing