Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision medicine for cancer with next-generation functional diagnostics

This article has been updated

Abstract

Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Next-generation approaches for cancer precision medicine.
Figure 2: Dynamic BH3 profiling can predict patient responses to cancer therapies.

Change history

  • 10 November 2015

    The sentence in Box 1 referring to non-synonymous mutations should have referred to synonymous mutations. This has been corrected to state "Even synonymous mutations can have effects on cellular fitness100."

References

  1. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  3. Sawyers, C. L. et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a Phase II study. Blood 99, 3530–3539 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Talpaz, M. et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a Phase 2 study. Blood 99, 1928–1937 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dienstmann, R., Jang, I. S., Bot, B., Friend, S. & Guinney, J. Database of genomic biomarkers for cancer drugs and clinical targetability in solid tumors. Cancer Discov. 5, 118–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jorgensen, J. H. & Ferraro, M. J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49, 1749–1755 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dishing out cancer treatment [Editorial]. Nat. Biotechnol. 31, 85 (2013).

  11. Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Piotrowska, Z. et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third generation EGFR inhibitor. Cancer Discov. 5, 713–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burstein, H. J. et al. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 29, 3328–3330 (2011).

    Article  PubMed  Google Scholar 

  19. Samson, D. J., Seidenfeld, J., Ziegler, K. & Aronson, N. Chemotherapy sensitivity and resistance assays: a systematic review. J. Clin. Oncol. 22, 3618–3630 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Schrag, D. et al. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 22, 3631–3638 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Von Hoff, D. D. et al. A Southwest Oncology Group study on the use of a human tumor cloning assay for predicting response in patients with ovarian cancer. Cancer 67, 20–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Nagourney, R. A., Evans, S. S., Messenger, J. C., Su, Y. Z. & Weisenthal, L. M. 2 chlorodeoxyadenosine activity and cross resistance patterns in primary cultures of human hematologic neoplasms. Br. J. Cancer. 67, 10–14 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kern, D. H. & Weisenthal, L. M. Highly specific prediction of antineoplastic drug resistance with an in vitro assay using suprapharmacologic drug exposures. J. Natl Cancer Inst. 82, 582–588 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Grendys, E. C. Jr et al. Overview of a chemoresponse assay in ovarian cancer. Clin. Transl Oncol. 16, 761–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maenpaa, J. U. et al. The subrenal capsule assay in selecting chemotherapy for ovarian cancer: a prospective randomized trial. Gynecol. Oncol. 57, 294–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Cree, I. A. et al. A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer. Anticancer Drugs 18, 1093–1101 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sandberg, R. & Ernberg, I. The molecular portrait of in vitro growth by meta-analysis of gene-expression profiles. Genome Biol. 6, R65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dairkee, S. H. et al. A molecular 'signature' of primary breast cancer cultures; patterns resembling tumor tissue. BMC Genomics 5, 47 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suprynowicz, F. A. et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc. Natl Acad. Sci. USA 109, 20035–20040 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yuan, H. et al. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N. Engl. J. Med. 367, 1220–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl Med. 5, 180ra48 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, M. et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195–14200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mengelbier, L. H. et al. Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat. Commun. 6, 6125 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Ridky, T. W., Chow, J. M., Wong, D. J. & Khavari, P. A. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat. Med. 16, 1450–1455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kenny, H. A. et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat. Commun. 6, 6220 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Vaira, V. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl Acad. Sci. USA 107, 8352–8356 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nagourney, R. A. et al. Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer. Anticancer Res. 32, 4453–4460 (2012).

    CAS  PubMed  Google Scholar 

  50. Majumder, B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Hirt, C. et al. 'In vitro' 3D models of tumor-immune system interaction. Adv. Drug Deliv. Rev. 79–80, 145–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Klinghoffer, R. A. et al. A technology platform to assess multiple cancer agents simultaneously within a patient's tumor. Sci. Transl Med. 7, 284ra58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl Med. 7, 284ra57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Siolas, D. & Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315–5319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stebbing, J. et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer 120, 2006–2015 (2014).

    Article  PubMed  Google Scholar 

  58. Rubio-Viqueira, B. et al. An in vivo platform for translational drug development in pancreatic cancer. Clin. Cancer Res. 12, 4652–4661 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Tyner, J. W. et al. RNAi screen for rapid therapeutic target identification in leukemia patients. Proc. Natl Acad. Sci. USA 106, 8695–8700 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tyner, J. W. et al. Kinase pathway dependence in primary human leukemias determined by rapid inhibitor screening. Cancer Res. 73, 285–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Glover, J. M., Loriaux, M., Tyner, J. W., Druker, B. J. & Chang, B. H. In vitro sensitivity to dasatinib in lymphoblasts from a patient with t(17;19)(q22;p13) gene rearrangement pre-B acute lymphoblastic leukemia. Pediatr. Blood Cancer 59, 576–579 (2012).

    Article  PubMed  Google Scholar 

  63. Kulesz-Martin, M. F. et al. A molecular case report: functional assay of tyrosine kinase inhibitors in cells from a patient's primary renal cell carcinoma. Cancer Biol. Ther. 14, 95–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davis, L. E. et al. A case study of personalized therapy for osteosarcoma. Pediatr. Blood Cancer 60, 1313–1319 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Yadav, B. et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep. 4, 5193 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Klco, J. M. et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 121, 1633–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lamothe, B. et al. Proteasome inhibitor carfilzomib complements ibrutinib's action in chronic lymphocytic leukemia. Blood 125, 407–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hilhorst, R. et al. Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples. Methods Mol. Biol. 977, 259–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Tahiri, A. et al. Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E) and BRAF wild-type metastatic malignant melanoma. PLoS ONE 8, e72692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schayowitz, A. et al. Functional profiling of live melanoma samples using a novel automated platform. PLoS ONE 7, e52760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Krutzik, P. O., Crane, J. M., Clutter, M. R. & Nolan, G. P. High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol. 4, 132–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kornblau, S. M. et al. Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy. Clin. Cancer Res. 16, 3721–3733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lacayo, N. J. et al. Development and validation of a single-cell network profiling assay-based classifier to predict response to induction therapy in paediatric patients with de novo acute myeloid leukaemia: a report from the Children's Oncology Group. Br. J. Haematol. 162, 250–262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hata, A. N., Engelman, J. A. & Faber, A. C. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Del Gaizo Moore, V. & Letai, A. BH3 profiling — measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 332, 202–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160, 977–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jahnke, H. G. et al. Direct chemosensitivity monitoring ex vivo on undissociated melanoma tumor tissue by impedance spectroscopy. Cancer Res. 74, 6408–6418 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kleinhans, R. et al. Sensor-based cell and tissue screening for personalized cancer chemotherapy. Med. Biol. Eng. Comput. 50, 117–126 (2012).

    Article  PubMed  Google Scholar 

  84. Simon, R. & Roychowdhury, S. Implementing personalized cancer genomics in clinical trials. Nat. Rev. Drug Discov. 12, 358–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Sawyers, C. L. & van 't Veer, L. J. Reliable and effective diagnostics are keys to accelerating personalized cancer medicine and transforming cancer care: a policy statement from the American Association for Cancer Research. Clin. Cancer Res. 20, 4978–4981 (2014).

    Article  PubMed  Google Scholar 

  86. U.S. Department of Health and Human Services. Anticipated Details of the Draft Guidance to Industry, Food and Drug Administration Staff and Clinical Laboratories: Framework for Regulatory Oversight of Laboratory Developed Tests (LDTs) FDA [online], (2014).

  87. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wheler, J. J. et al. Prospective study comparing outcomes in patients with advanced malignancies on molecular alteration-matched versus non-matched therapy. J. Clin. Oncol. 33, S11019 (2015).

    Article  Google Scholar 

  89. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Wander, S. A., Levis, M. J. & Fathi, A. T. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther. Adv. Hematol. 5, 65–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Oncol. 28, 15s (2010).

    Article  CAS  Google Scholar 

  96. Rubio-Perez, C. et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 27, 382–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Herbst, R. S. et al. Lung Master Protocol (Lung-MAP) — a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin. Cancer Res. 21, 1514–1524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lopez-Chavez, A. et al. Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker-derived, multiarm, multihistology Phase II basket trial. J. Clin. Oncol. 33, 1000–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lind, P. A., Berg, O. G. & Andersson, D. I. Mutational robustness of ribosomal protein genes. Science 330, 825–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Cameron, F. & Sanford, M. Ibrutinib: first global approval. Drugs 74, 263–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Markham, A. Idelalisib: first global approval. Drugs 74, 1701–1707 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74, 4016–4023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simon, R. M., Paik, S. & Hayes, D. F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl Cancer Inst. 101, 1446–1452 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tsourounis, M., Stuart, J., Pignato, W., Toscani, M. & Barone, J. Current trends in personalized medicine and companion diagnostics: a summary from the DIA meeting on personalized medicine and companion diagnostics. Ther. Innov. Regul. Sci. 49, 530–543 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to investigators whose research they were unable to include owing to space considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam A. Friedman.

Ethics declarations

Competing interests

A.L. is a co-inventor on patents related to BH3 profiling for the selection of therapies for patients with cancer. A.A.F., A.L., D.E.F. and K.T.F. hold equity in and serve on the Scientific Advisory Board of Leap Oncology.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A., Letai, A., Fisher, D. et al. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15, 747–756 (2015). https://doi.org/10.1038/nrc4015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc4015

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer