Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumorigenesis: it takes a village

Key Points

  • Most human cancers exhibit a high degree of intratumour heterogeneity that arises from heritable and stochastic genetic and epigenetic changes, as well as environmental variations within the tumour. Heterogeneous subpopulations that exist within close proximity and compete for limited resources can engage in complex interactions that affect tumorigenesis, disease progression and therapeutic outcomes.

  • Phenotypic changes that arise from subclonal interactions in heterogeneous tumours were observed by cancer biologists very early on. However, as studies mostly focused on cell-autonomous oncogenes and tumour suppressors, investigations into clonal interactions went under the radar for almost three decades. With the increasing recognition of intratumour heterogeneity fuelled by advances in technology, dissecting the mechanistic basis of clonal interactions is now gaining more attention.

  • In addition to the more traditional models that explore clonal interactions strictly from the competitive angle, newer studies are investigating cooperative interactions among subclones that could give rise to novel characteristics and that potentially increase the growth and progression of the tumour.

  • In the absence of proper tools to directly study clonal interactions in patient samples, studies in D. melanogaster, rodents and xenograft systems (using both established cell lines and patient-derived cells) are providing us with mechanistic insights into interclonal crosstalk.

  • Theoretical and mathematical modelling are being used to simulate clonal dynamics under variable circumstances. Although currently far from perfect, these in silico cancer models have already been useful for the design of optimized cancer therapies for the more effective eradication of tumours.

  • Cooperation can be metabolically costly but evolution and survival are more efficient, especially in a changing environment, when diversity and heterogeneity are high. Insights from patient tumours have revealed the presence of multiple independent neoplastic driver subclones that could re-establish tumour heterogeneity after therapy and lead to disease relapse. Furthermore, there is increasing evidence of transient clonal cooperation between neoplastic and benign subclones, which can also lead to tumour recurrence.

  • In order to tackle the ever-evolving populations of tumour cells more effectively and to devise more lasting cures in patients, we must use ecological approaches that take advantage of cooperative tumour-promoting interactions and strategically eliminate them instead of targeting each individual subpopulation.

Abstract

Although it is widely accepted that most cancers exhibit some degree of intratumour heterogeneity, we are far from understanding the dynamics that operate among subpopulations within tumours. There is growing evidence that cancer cells behave as communities, and increasing attention is now being directed towards the cooperative behaviour of subclones that can influence disease progression. As expected, these interactions can add a greater layer of complexity to therapeutic interventions in heterogeneous tumours, often leading to a poor prognosis. In this Review, we highlight studies that demonstrate such interactions in cancer and postulate ways to overcome them with better-designed therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-cell-autonomous interactions between populations can affect tumorigenesis, metastasis and therapeutic resistance.
Figure 2: Unique properties of heterogeneous tumours using gain of metastatic potential as an example.
Figure 3: Deficiencies of xenograft assays using homogeneous cell populations or single cells.
Figure 4: Improving therapeutic design for heterogeneous tumours.

Similar content being viewed by others

References

  1. Aristotle Metaphysica Vol. 8, 1045a (1933).

  2. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  3. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  4. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Gerlinger, M. et al. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lajara, R. et al. Dual regulation of insulin-like growth factor I expression during renal hypertrophy. Am. J. Physiol. 257, F252–F261 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12, 487–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38, 3174–3181 (1978).

    CAS  PubMed  Google Scholar 

  12. Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38, 2651–2660 (1978).

    CAS  PubMed  Google Scholar 

  13. Miller, B. E., Miller, F. R., Wilburn, D. & Heppner, G. H. Dominance of a tumor subpopulation line in mixed heterogeneous mouse mammary tumors. Cancer Res. 48, 5747–5753 (1988). This paper was one of the first reports of mutualism between two populations of cancer cells.

    CAS  PubMed  Google Scholar 

  14. Miller, B. E., Miller, F. R. & Heppner, G. H. Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclophosphamide and methotrexate. Cancer Res. 41, 4378–4381 (1981).

    CAS  PubMed  Google Scholar 

  15. Miller, B. E., Machemer, T., Lehotan, M. & Heppner, G. H. Tumor subpopulation interactions affecting melphalan sensitivity in palpable mouse mammary tumors. Cancer Res. 51, 4378–4387 (1991).

    CAS  PubMed  Google Scholar 

  16. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5, 5499 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heppner, G. H. Tumor cell societies. J. Natl Cancer Inst. 81, 648–649 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Michelson, S. Facilitation of emergence of multidrug-resistant state by alteration of tumor environment: implications from competitive ecology models. Cancer Treat. Rep. 71, 1093–1094 (1987).

    CAS  PubMed  Google Scholar 

  22. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat. Med. 5, 11–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Merlo, L. M., Kosoff, R. E., Gardiner, K. L. & Maley, C. C. An in vitro co-culture model of esophageal cells identifies ascorbic acid as a modulator of cell competition. BMC Cancer 11, 461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanahan, D. & Weinberg, R. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. USA 103, 13474–13479 (2006). This paper presented several theories and hypotheses of how cooperative interactions between cancer cells could be affecting tumour behaviour and how they could be investigated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014). This paper provided evidence in a mouse model of breast cancer of how cooperation between distinct subpopulations is necessary for the maintenance of the tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014). This paper illustrated how a minor subpopulation can drive tumour growth and maintain intratumour clonal heterogeneity via microenvironmental modulation in a xenograft model of breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mateo, F. et al. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol. Cancer 13, 237 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chapman, A. et al. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 8, 688–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wagenblast, E. et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520, 358–362 (2015). This paper showed how certain subclones in a murine cancer model can participate in altruistic behaviour such as vascular mimicry to increase the metastatic dissemination of both themselves and their neighbouring subclones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michelson, S., Miller, B. E., Glicksman, A. S. & Leith, J. T. Tumor micro-ecology and competitive interactions. J. Theor. Biol. 128, 233–246 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Foster, K. R. Biomedicine. Hamiltonian medicine: why the social lives of pathogens matter. Science 308, 1269–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lambert, G. et al. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat. Rev. Cancer 11, 375–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crespi, B., Foster, K. & Ubeda, F. First principles of Hamiltonian medicine. Phil. Trans. R. Soc. B 369, 20130366 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  Google Scholar 

  38. Archetti, M., Ferraro, D. A. & Christofori, G. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. Proc. Natl Acad. Sci. USA 112, 1833–1838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Czaran, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786–790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tomlinson, I. P. & Bodmer, W. F. Modelling the consequences of interactions between tumour cells. Br. J. Cancer 75, 157–160 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reid, M. et al. Breathe easy at home: a web-based referral system linking clinical sites with housing code enforcement for patients with asthma. J. Environ. Health 76, 36–39 (2014).

    PubMed  Google Scholar 

  42. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Baker, N. E. Cell competition. Curr. Biol. 21, R11–R15 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Vincent, J. P., Fletcher, A. G. & Baena-Lopez, L. A. Mechanisms and mechanics of cell competition in epithelia. Nat. Rev. Mol. Cell Biol. 14, 581–591 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Amoyel, M. & Bach, E. A. Cell competition: how to eliminate your neighbours. Development 141, 988–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Merino, M. M. et al. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell 160, 461–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alcolea, M. P. & Jones, P. H. Cell competition: winning out by losing notch. Cell Cycle 14, 9–17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uhlirova, M., Jasper, H. & Bohmann, D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc. Natl Acad. Sci. USA 102, 13123–13128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohsawa, S. et al. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490, 547–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011). This paper illustrated synergistic interactions between two populations of cancer cells that resulted in a novel metastatic phenotype of one of the populations.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, M. et al. Intratumoral heterogeneity in a Trp53-null mouse model of human breast cancer. Cancer Discov. 5, 520–533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kern, S. E. & Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res. 67, 8985–8988 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Duong, T. et al. VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 123, 1102–1112 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Inda, M. M. et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24, 1731–1745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015). This paper demonstrated that intratumour subclonal heterogeneity is often maintained even after xenotransplantation thereby implying its evolutionary advantage.

    Article  CAS  PubMed  Google Scholar 

  59. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Almendro, V. et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6, 514–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grant, P. R., Grant, B. R., Markert, J. A., Keller, L. F. & Petren, K. Convergent evolution of Darwin's finches caused by introgressive hybridization and selection. Evolution 58, 1588–1599 (2004).

    Article  PubMed  Google Scholar 

  65. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Francis, J. M. et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 4, 956–971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oesterreich, S. & Davidson, N. E. The search for ESR1 mutations in breast cancer. Nat. Genet. 45, 1415–1416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jeselsohn, R. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hobor, S. et al. TGFα and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin. Cancer Res. 20, 6429–6438 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Thliveris, A. T. et al. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc. Natl Acad. Sci. USA 110, 11523–11528 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fomchenko, E. I. et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS ONE 6, e20605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Singh, R., Pochampally, R., Watabe, K., Lu, Z. & Mo, Y. Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol. Cancer 13, 256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gefen, O. & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 33, 704–717 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pepper, J. W., Scott Findlay, C., Kassen, R., Spencer, S. L. & Maley, C. C. Cancer research meets evolutionary biology. Evol. Appl. 2, 62–70 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pepper, J. W. Defeating pathogen drug resistance: guidance from evolutionary theory. Evolution 62, 3185–3191 (2008).

    Article  PubMed  Google Scholar 

  84. Pienta, K. J., McGregor, N., Axelrod, R. & Axelrod, D. E. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Transl Oncol. 1, 158–164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pepper, J. W. Drugs that target pathogen public goods are robust against evolved drug resistance. Evol. Appl. 5, 757–761 (2012). This paper used modelling to show how the elimination of pathogens can be achieved by removing common resources, thus indicating that abolishing of common gooder populations in cancers might lead to prolonged survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mateo, J., Gerlinger, M., Rodrigues, D. N. & de Bono, J. S. The promise of circulating tumor cell analysis in cancer management. Genome Biol. 15, 448 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. De Mattos-Arruda, L. et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol. 10, 377–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Haber, D. A. & Velculescu, V. E. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 4, 650–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S. & Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Al-Dimassi, S., Abou-Antoun, T. & El-Sibai, M. Cancer cell resistance mechanisms: a mini review. Clin. Transl Oncol. 16, 511–516 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Marusyk and M. Janiszewska for their critical reading of the manuscript and for stimulating discussions. Tumour heterogeneity research in the authors' laboratory is supported by US Army Congressionally Directed Research BC131217P1 (K.P.), and the Breast Cancer Research Foundation (K.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelia Polyak.

Ethics declarations

Competing interests

Sponsored research agreement and consultancy with Novartis Oncology (K.P.). D.P.T. declares no competing interests.

PowerPoint slides

Glossary

Clones

Groups of cells that each originate from a common ancestor and share the same set of genetic and epigenetic alterations. Any new subset of changes occurring within clones gives rise to subclones.

Clonal interference

A phenomenon in which multiple clones of higher than average fitness coexist in the same population and interfere with each other. It results from negative interactions that eventually reach equilibrium. Clonal interference is thought to slow down evolution.

'Free-rider' or 'cheater' subclones

These are cancer cell populations that take advantage of resources produced by other cancer cell populations within the tumour to proliferate and survive without any obvious reciprocation to their neighbours.

Eye-imaginal discs

A zone of cells in the Drosophila melanogaster larvae that give rise to the structures of compound eyes in the adult fly.

Phenotype switching

The ability of cells to change their phenotype in response to the environment. It is usually a result of changes in epigenetic modifications within the cell and is reversible.

Recovery periods and drug holidays

As most therapeutic regimens have some accompanying side effects, patients are usually taken off the treatment for short intervals to allow for recovery from systemic toxicity. Sometimes drug holidays are also scheduled to increase the efficacy of the treatment.

Cellular diversity scoring

Widely used in ecology, diversity scoring is a process of quantifying heterogeneity in an environment by taking into account the number and abundance of its inhabiting species. In tumours, the cellular diversity score is a number that represents the extent of unique sub-clonal populations that contribute to the intratumour heterogeneity.

Common gooders

Populations of cells that can act as non-cell-autonomous drivers of tumour growth through the secretion of diffusible factors that can have positive paracrine influences on neighbouring populations.

Public goods

A term from the field of economics that denotes resources that are consumed by the entire society rather than an individual. In the tumour milieu, public goods can be exemplified by diffusible growth factors, nutrients and oxygen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, D., Polyak, K. Tumorigenesis: it takes a village. Nat Rev Cancer 15, 473–483 (2015). https://doi.org/10.1038/nrc3971

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3971

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer