Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence

An Erratum to this article was published on 24 July 2015

This article has been updated

Key Points

  • Radiotherapy is a common treatment option for cancer patients. However, many aspects of the tumour microenvironment (TME) can render a tumour resistant to radiotherapy de novo or can lead it to recur with a worse prognosis following therapy.

  • Normal tissue toxicity limits the dose of radiotherapy that can be safely delivered.

  • Combination strategies are required in order to achieve better tumour control.

  • Radiotherapy-mediated immunogenic cell death (ICD) can elicit an immune response, but antitumour immunity may be limited owing to the presence of radioresistant suppressor cell types in the TME. Combining radiotherapy and immunomodulatory treatments may overcome adaptive immune suppression and holds great promise both locally in the primary tumour and abscopally.

  • Hypoxia has a crucial role in radioresistance owing to reduced oxygen-mediated fixation of DNA damage and hypoxia induced factor 1α (HIF1α)-mediated cell survival. Attempts to increase oxygen delivery, normalize tumour vessels, inhibit HIF1α and prevent the recruitment of bone marrow-derived cells (BMDCs) required for vasculogenesis are all being tested to reduce tumour hypoxia, improve radiotherapy responses and prevent tumour recurrence after therapy.

  • Tumour irradiation induces a wound healing response that is characterized by inflammation, cancer-associated fibroblast (CAF) modulation and extracellular matrix (ECM) remodelling, which may facilitate tumour recurrence. Targeting the initial inflammatory response may counteract attempts to boost the immune-mediated antitumour response following radiotherapy. Therefore, reducing ECM remodelling by inhibiting growth factors, receptor kinases or matrix enzymes may be more effective in preventing the post-irradiation stiffening of the TME that could facilitate tumour spread.

  • Careful scheduling of tumour reoxygenation strategies with radiotherapy will be required to maximize tumour control. Subsequent inclusion of immunomodulatory and anti-fibrotic treatments should be considered to maximize therapeutic benefits and to prevent post-irradiation tumour recurrence and metastasis.

Abstract

Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focused on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes that are induced in the tumour microenvironment by irradiation and discuss how these changes may promote radioresistance and tumour recurrence. We also highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiation effects on the TME.
Figure 2: Biological effects and normal tissue toxicity after radiotherapy.
Figure 3: ICD of cancer cells and immune tolerization.
Figure 4: Targets for radiosensitization.
Figure 5: The interconnected radiotherapy-mediated changes in the TME.

Similar content being viewed by others

Change history

  • 24 July 2015

    In the version of this article that was originally published, there was an error in Figure 1 on page 410 and in Figure 4 on page 417. In both figures, programmed cell death protein 1 (PD1) was shown to be expressed on the cancer cell and PD1 ligand 1 (PDL1) was shown to be expressed on T cells, whereas PD1 should be expressed on T cells and PDL1 on cancer cells. These errors have now been corrected in the online versions of the article.

References

  1. Harrington, K. J. et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br. J. Cancer 105, 628–639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Camphausen, K. & Tofilon, P. J. Combining radiation and molecular targeting in cancer therapy. Cancer Biol. Ther. 3, 247–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Barcellos-Hoff, M. H., Park, C. & Wright, E. G. Radiation and the microenvironment — tumorigenesis and therapy. Nat. Rev. Cancer 5, 867–875 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Durand, R. E. The influence of microenvironmental factors during cancer therapy. In Vivo 8, 691–702 (1994).

    CAS  PubMed  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000). This paper demonstrates that radiotherapy-mediated changes in ECM composition and growth factor activities in the TME can contribute to neoplastic progression.

    CAS  PubMed  Google Scholar 

  8. Good, J. S. & Harrington, K. J. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin. Oncol. (R. Coll. Radiol) 25, 569–577 (2013).

    Article  CAS  Google Scholar 

  9. Heckmann, M., Douwes, K., Peter, R. & Degitz, K. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Exp. Cell Res. 238, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Langley, R. E., Bump, E. A., Quartuccio, S. G., Medeiros, D. & Braunhut, S. J. Radiation-induced apoptosis in microvascular endothelial cells. Br. J. Cancer 75, 666–672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J., Boerma, M., Fu, Q. & Hauer-Jensen, M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J. Gastroenterol. 13, 3047–3055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker, D. G. & Krochak, R. J. The response of the microvascular system to radiation: a review. Cancer Invest. 7, 287–294 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Gujral, D. M., Chahal, N., Senior, R., Harrington, K. J. & Nutting, C. M. Radiation-induced carotid artery atherosclerosis. Radiother. Oncol. 110, 31–38 (2014).

    Article  PubMed  Google Scholar 

  15. Hoving, S. et al. Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(−/−) mice. Int. J. Radiat. Oncol. Biol. Phys. 71, 848–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Russell, N. S. et al. Novel insights into pathological changes in muscular arteries of radiotherapy patients. Radiother. Oncol. 92, 477–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Stewart, F. A. et al. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am. J. Pathol. 168, 649–658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chin, M. S. et al. Skin perfusion and oxygenation changes in radiation fibrosis. Plast. Reconstr. Surg. 131, 707–716 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Park, H. J., Griffin, R. J., Hui, S., Levitt, S. H. & Song, C. W. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat. Res. 177, 311–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Denekamp, J. Vascular endothelium as the vulnerable element in tumours. Acta Radiol. Oncol. 23, 217–225 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003). This paper reports the requirement of ASMase for endothelial cell sensitivity to radiotherapy and also demonstrates that microvascular damage is important for tumour response to radiotherapy.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn, G. O. & Brown, J. M. Influence of bone marrow-derived hematopoietic cells on the tumor response to radiotherapy: experimental models and clinical perspectives. Cell Cycle 8, 970–976 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Begg, A. C., Stewart, F. A. & Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11, 239–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010). This paper demonstrates that irradiation induces tumour vasculogenesis through HIF1- and CXCL12-mediated BMDC recruitment in a GBM xenograft model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozin, S. V. et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 70, 5679–5685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lerman, O. Z. et al. Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 116, 3669–3676 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Gressner, O. A. & Gressner, A. M. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 28, 1065–1079 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Verrecchia, F. & Mauviel, A. Transforming growth factor-β and fibrosis. World J. Gastroenterol. 13, 3056–3062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yarnold, J. & Brotons, M. C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97, 149–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Spaeth, E. L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 4, e4992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H., Fan, X. & Houghton, J. Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell Biochem. 101, 805–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 4, 62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Catteau, X., Simon, P. & Noel, J. C. Myofibroblastic stromal reaction and lymph node status in invasive breast carcinoma: possible role of the TGF-β1/TGF-βR1 pathway. BMC Cancer 14, 499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lohr, M. et al. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 61, 550–555 (2001).

    CAS  PubMed  Google Scholar 

  39. Ronnov-Jessen, L. & Petersen, O. W. Induction of α-smooth muscle actin by transforming growth factor-β 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest. 68, 696–707 (1993).

    CAS  PubMed  Google Scholar 

  40. Kojima, Y. et al. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y. et al. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. J. Immunol. 187, 2814–2823 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Hellevik, T. et al. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat. Oncol. 7, 59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cordes, N., Seidler, J., Durzok, R., Geinitz, H. & Brakebusch, C. β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25, 1378–1390 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hodkinson, P. S. et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through β1 integrin-dependent activation of PI3-kinase. Cell Death Differ. 13, 1776–1788 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J. & Bissell, M. J. β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res. 68, 4398–4405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mantoni, T. S., Lunardi, S., Al-Assar, O., Masamune, A. & Brunner, T. B. Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling. Cancer Res. 71, 3453–3458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carracedo, S. et al. The fibroblast integrin α11β1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J. Biol. Chem. 285, 10434–10445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Puthawala, K. et al. Inhibition of integrin αvβ6, an activator of latent transforming growth factor-β, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Philip, M., Rowley, D. A. & Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 14, 433–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Li, Q., Withoff, S. & Verma, I. M. Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol. 26, 318–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, W. W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl. Oncol. 5, 404–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Harris, T. J. et al. Radiotherapy augments the immune response to prostate cancer in a time-dependent manner. Prostate 68, 1319–1329 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laoui, D., Van Overmeire, E., De Baetselier, P., Van Ginderachter, J. A. & Raes, G. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front. Immunol. 5, 489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kachikwu, E. L. et al. Radiation enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 81, 1128–1135 (2011).

    Article  PubMed  Google Scholar 

  58. Qu, Y. et al. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat. Res. 173, 148–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Schaue, D. & McBride, W. H. Links between innate immunity and normal tissue radiobiology. Radiat. Res. 173, 406–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ozsoy, H. Z., Sivasubramanian, N., Wieder, E. D., Pedersen, S. & Mann, D. L. Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J. Biol. Chem. 283, 23419–23428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30, 1147–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). This paper explores the immunogenic response to HMGB1 release by dying tumour cells through the PRR TLR4, which is expressed on DCs, after chemotherapy or radiotherapy. It demonstrates the important role of PRR DAMP signalling in efficient DC activation and antigen cross-presentation.

    Article  CAS  PubMed  Google Scholar 

  65. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011). This study explores the immunoregulatory actions of CTLA4 against stimulation of CD28 by CD80 and CD86 in vitro and in vivo and therefore provides a biological basis for the efficacy of anti-CTLA4 therapy in cancer treatments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meng, Y. et al. Ad.Egr-TNF and local ionizing radiation suppress metastases by interferon-β-dependent activation of antigen-specific CD8+ T cells. Mol. Ther. 18, 912–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gupta, A. et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 189, 558–566 (2012). This study examines the importance of DC activation in generating an effective CD8+ T cell response after radiotherapy.

    Article  CAS  PubMed  Google Scholar 

  70. Antoniades, J., Brady, L. W. & Lightfoot, D. A. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int. J. Radiat. Oncol. Biol. Phys. 2, 141–147 (1977).

    Article  CAS  PubMed  Google Scholar 

  71. Ohba, K. et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43, 575–577 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wersall, P. J. et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 45, 493–497 (2006).

    Article  PubMed  Google Scholar 

  73. Okuma, K., Yamashita, H., Niibe, Y., Hayakawa, K. & Nakagawa, K. Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: a case report. J. Med. Case Rep. 5, 111 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012). This case report demonstrates the abscopal effect with the combination of high fraction radiotherapy and anti-CTLA4 immunotherapy in metastatic melanoma, leading to regression of all metastases in the patient. They also noted the occurrence of antibody responses to the cancer testis antigen NY-ESO-1, changes in blood immune cells and increased antibody responses to other antigens following radiotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    Article  PubMed  Google Scholar 

  76. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Overgaard, J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck — a systematic review and meta-analysis. Radiother. Oncol. 100, 22–32 (2011). This reference is a comprehensive review of the importance of tumour hypoxia for radiotherapy outcome and the current methods being trialled to modify hypoxia during radiotherapy for patients with HNSCC.

    Article  PubMed  Google Scholar 

  78. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  79. Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52, 650–656 (1979).

    Article  CAS  PubMed  Google Scholar 

  80. Dewhirst, M. W. et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer Suppl. 27, S247–251 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Harada, H. How can we overcome tumor hypoxia in radiation therapy? J. Radiat. Res. 52, 545–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Semenza, G. L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Brizel, D. M., Sibley, G. S., Prosnitz, L. R., Scher, R. L. & Dewhirst, M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 38, 285–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Yoshimura, M., Itasaka, S., Harada, H. & Hiraoka, M. Microenvironment and radiation therapy. Biomed. Res. Int. 2013, 685308 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Janssens, G. O. et al. Improved recurrence-free survival with ARCON for anemic patients with laryngeal cancer. Clin. Cancer Res. 20, 1345–1354 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Hoskin, P., Rojas, A. & Saunders, M. Accelerated radiotherapy, carbogen, and nicotinamide (ARCON) in the treatment of advanced bladder cancer: mature results of a Phase II nonrandomized study. Int. J. Radiat. Oncol. Biol. Phys. 73, 1425–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Janssens, G. O. et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a Phase III randomized trial. J. Clin. Oncol. 30, 1777–1783 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Baillet, F., Housset, M., Dessard-Diana, B. & Boisserie, G. Positive clinical experience with misonidazole in brachytherapy and external radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 16, 1073–1075 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Minsky, B. D. & Leibel, S. A. The treatment of hepatic metastases from colorectal cancer with radiation therapy alone or combined with chemotherapy or misonidazole. Cancer Treat. Rev. 16, 213–219 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Simpson, J. R. et al. Radiation therapy alone or combined with misonidazole in the treatment of locally advanced non-oat cell lung cancer: report of an RTOG prospective randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 16, 1483–1491 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Nishimura, Y. et al. Phase I/II trial of sequential chemoradiotherapy using a novel hypoxic cell radiosensitizer, doranidazole (PR-350), in patients with locally advanced non-small-cell lung Cancer (WJTOG-0002). Int. J. Radiat. Oncol. Biol. Phys. 69, 786–792 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Overgaard, J. et al. A randomized double-blind Phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5–85. Radiother. Oncol. 46, 135–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Thomson, D. et al. NIMRAD — a Phase III trial to investigate the use of nimorazole hypoxia modification with intensity-modulated radiotherapy in head and neck cancer. Clin. Oncol. (R. Coll. Radiol.) 26, 344–347 (2014).

    Article  CAS  Google Scholar 

  94. Prasad, P. et al. Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8, 3202–3212 (2014). This paper introduces the most recent attempt to modify tumour hypoxia using albumin–MnO 2 nanoparticles, which increase tumour oxygenation in hypoxic regions. This treatment enhanced the radiotherapy response of breast cancer.

    Article  CAS  PubMed  Google Scholar 

  95. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004). This paper demonstrates that radiotherapy-mediated tumour reoxygenation stabilizes HIF1, leading to enhanced cytokine secretion and endothelial cell radioresistance.

    Article  CAS  PubMed  Google Scholar 

  96. Aebersold, D. M. et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61, 2911–2916 (2001).

    CAS  PubMed  Google Scholar 

  97. Koukourakis, M. I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 1192–1202 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Koukourakis, M. I. et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 α and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J. Clin. Oncol. 24, 727–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl Acad. Sci. USA 106, 17910–17915 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Harada, H. et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br. J. Cancer 100, 747–757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Riedel, K. et al. Abrogation of TGF-β by antisense oligonucleotides modulates expression of VEGF and increases angiogenic potential in isolated fibroblasts from radiated skin. Int. J. Mol. Med. 22, 473–480 (2008).

    CAS  PubMed  Google Scholar 

  102. Goumans, M. J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005). This paper reviews the evidence that was emerging at the time that certain anti-angiogenic agents can normalize the abnormal tumour vessels to enable better oxygen and drug delivery, rather than completely destroying the tumour vasculature as was previously thought.

    Article  CAS  PubMed  Google Scholar 

  107. Fokas, E. et al. Dual inhibition of the PI3K/mTOR pathway increases tumor radiosensitivity by normalizing tumor vasculature. Cancer Res. 72, 239–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Dings, R. P. et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin. Cancer Res. 13, 3395–3402 (2007). This paper demonstrates the use of anti-angiogenics in vessel normalization and the importance of scheduling radiotherapy to fall within the tumour oxygenation window.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McGee, M. C. et al. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys. 76, 1537–1545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Lund, E. L., Bastholm, L. & Kristjansen, P. E. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin. Cancer Res. 6, 971–978 (2000).

    CAS  PubMed  Google Scholar 

  112. Teicher, B. A., Emi, Y., Kakeji, Y. & Northey, D. TNP-470/minocycline/cytotoxic therapy: a systems approach to cancer therapy. Eur. J. Cancer 32A, 2461–2466 (1996).

  113. Teicher, B. A. et al. Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res. Treat. 36, 227–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Ling, Y. et al. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochem. Biophys. Res. Commun. 361, 79–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, Y. et al. Endostar combined with radiotherapy increases radiation sensitivity by decreasing the expression of TGF-β1, HIF-1α and bFGF. Exp. Ther. Med. 7, 911–916 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, J. et al. Antitumor activity of Endostar combined with radiation against human nasopharyngeal carcinoma in mouse xenograft models. Oncol. Lett. 4, 976–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown, J. M. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol 87, 20130686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Burrell, K., Singh, S., Jalali, S., Hill, R. P. & Zadeh, G. VEGF regulates region-specific localization of perivascular bone marrow-derived cells in glioblastoma. Cancer Res. 74, 3727–3739 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Abdollahi, A. et al. Inhibition of αvβ3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin. Cancer Res. 11, 6270–6279 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Nabors, L. B. et al. A safety run-in and randomized Phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 118, 5601–5607 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, Phase 3 trial. Lancet Oncol. 15, 1100–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res. 6, 3056–3061 (2000).

    CAS  PubMed  Google Scholar 

  123. Kuwada, S. K. Drug evaluation: volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr. Opin. Mol. Ther. 9, 92–98 (2007).

    CAS  PubMed  Google Scholar 

  124. Barkan, D. & Chambers, A. F. β1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin. Cancer Res. 17, 7219–7223 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Multhoff, G. & Radons, J. Radiation, inflammation, and immune responses in cancer. Front. Oncol. 2, 58 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Barcellos-Hoff, M. H., Derynck, R., Tsang, M. L. & Weatherbee, J. A. Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93, 892–899 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dancea, H. C., Shareef, M. M. & Ahmed, M. M. Role of radiation-induced TGF-β signaling in cancer therapy. Mol. Cell Pharmacol. 1, 44–56 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Biswas, S. et al. Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J. Clin. Invest. 117, 1305–1313 (2007). This paper implicates TGFβ in post-radiotherapy induction of metastasis and provides a rationale for combining TGFβ inhibitors with radiotherapy to prevent cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bouquet, F. et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin. Cancer Res. 17, 6754–6765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neuzillet, C. et al. Targeting the TGFβ pathway for cancer therapy. Pharmacology and Therapeutics 147, 22–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Medicherla, S. et al. Antitumor activity of TGF-β inhibitor is dependent on the microenvironment. Anticancer Res. 27, 4149–4157 (2007).

    CAS  PubMed  Google Scholar 

  132. Cui, J. J. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J. Med. Chem. 57, 4427–4453 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. De Bacco, F. et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl Cancer Inst. 103, 645–661 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Ohuchida, K. et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 64, 3215–3222 (2004). This paper presents the findings that irradiated fibroblasts can increase the invasiveness of pancreatic cancer cells. This increased invasion can be abrogated through MET inhibition using a specific HGF antagonist.

    Article  CAS  PubMed  Google Scholar 

  135. Cokgor, I. et al. Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 18, 3862–3872 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Reardon, D. A. et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 20, 1389–1397 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Reardon, D. A. et al. A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol. 10, 182–189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Distler, J. H. & Distler, O. Tyrosine kinase inhibitors for the treatment of fibrotic diseases such as systemic sclerosis: towards molecular targeted therapies. Ann. Rheum. Dis. 69 (Suppl. 1), i48–i51 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Antoniu, S. A. Nintedanib (BIBF 1120) for IPF: a tomorrow therapy? Multidiscip. Respir. Med. 7, 41 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chaudhary, N. I. et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J. 29, 976–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Omenetti, A. et al. Hedgehog signaling regulates epithelial–mesenchymal transition during biliary fibrosis in rodents and humans. J. Clin. Invest. 118, 3331–3342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bailey, J. M. et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res. 14, 5995–6004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee, M. J. et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc. Natl Acad. Sci. USA 109, 7859–7864 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rodon, J. et al. A Phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin. Cancer Res. 20, 1900–1909 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Sekulic, A. et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 366, 2171–2179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bayers, S., Kapp, D. L., Beer, K. R. & Slavin, B. Treatment of margin positive basal cell carcinoma with vismodegib: case report and consideration of treatment options and their implications. J. Drugs Dermatol. 12, s147–150 (2013).

    PubMed  Google Scholar 

  147. Leschey, K. H., Hines, J., Singer, J. H., Hackett, S. F. & Campochiaro, P. A. Inhibition of growth factor effects in retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 32, 1770–1778 (1991).

    CAS  PubMed  Google Scholar 

  148. McGeary, R. P., Bennett, A. J., Tran, Q. B., Cosgrove, K. L. & Ross, B. P. Suramin: clinical uses and structure-activity relationships. Mini Rev. Med. Chem. 8, 1384–1394 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Laterra, J. J. et al. Suramin and radiotherapy in newly diagnosed glioblastoma: Phase 2 NABTT CNS Consortium study. Neuro Oncol. 6, 15–20 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tayel, A. et al. Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur. J. Pharmacol. 728, 151–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Vlodavsky, I. et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron 5, 115–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Meirovitz, A. et al. Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res. 71, 2772–2780 (2011). This article reports that radiotherapy-induced heparanase upregulation increases the invasion of pancreatic cancer cells. Inhibition of heparanase using SST0001 in combination with radiotherapy successfully attenuated the spread of orthotopic pancreatic tumours in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dredge, K. et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br. J. Cancer 104, 635–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, C. J. et al. Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence. World J. Gastroenterol. 20, 11384–11393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hammond, E., Handley, P., Dredge, K. & Bytheway, I. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio 3, 346–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Badiga, A. V. et al. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS ONE 6, e20614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kaliski, A. et al. Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol. Cancer Ther. 4, 1717–1728 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Qian, L. W. et al. Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin. Cancer Res. 8, 1223–1227 (2002).

    CAS  PubMed  Google Scholar 

  160. Takahashi, M. et al. In vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol. Res. 46, 155–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014). This paper demonstrates a novel role for CAFs in the TME of pancreatic cancer. In contrast to previous beliefs, the depletion of CAFs in a pancreatic cancer model led to disease progression. Moreover, patients with pancreatic ductal adenocarcinoma with fewer myofibroblasts were shown to have a worse prognosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011). This study identifies caspase 3, which is involved in apoptosis after exposure to ionizing radiation, as an important component in repopulation signalling and tumour resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mantovani, A., Romero, P., Palucka, A. K. & Marincola, F. M. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371, 771–783 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Finkelstein, S. E. et al. Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int. J. Radiat. Oncol. Biol. Phys. 82, 924–932 (2012).

    Article  PubMed  Google Scholar 

  165. Roses, R. E., Datta, J. & Czerniecki, B. J. Radiation as immunomodulator: implications for dendritic cell-based immunotherapy. Radiat. Res. 182, 211–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dewan, M. Z. et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin. Cancer Res. 18, 6668–6678 (2012). This study explores different fractionation of radiotherapy in combination with CTLA4-specific antibodies in a murine model, demonstrating an optimal fractionation at around 24 Gy in three doses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Czerniecki, B. J. et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 67, 1842–1852 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Formenti, S. et al. Pilot trial of radiation therapy and GM-CSF in metastatic cancer: abscopal responses. Int. J. Radi. Oncol. Biol. Phys. 84, S178–S178 (2012).

    Article  Google Scholar 

  169. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gough, M. J. et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J. Immunother. 33, 798–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. de la Cruz-Merino, L. et al. Radiation for awakening the dormant immune system, a promising challenge to be explored. Front. Immunol. 5, 102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer 7, 95–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010). This study looks at the reversal of T cell exhaustion by combined targeting of PD1 and TIM3 receptors as a means of increasing tumour immunity. It is likely that similar combinations in conjunction with radiotherapy could prove to be effective as future cancer treatments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014). This preclinical study demonstrates the effectiveness of targeting T cell exhaustion pathways in combination with radiotherapy. There is also a potential synergistic effect with anti-CTLA4 therapy and other immunomodulatory therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Verbrugge, I. et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 72, 3163–3174 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Marabelle, A., Filatenkov, A., Sagiv-Barfi, I. & Kohrt, H. Radiotherapy and toll-like receptor agonists. Semin. Radiat. Oncol. 25, 34–39 (2015).

    Article  PubMed  Google Scholar 

  182. Russell, S. J., Peng, K. W. & Bell, J. C. Oncolytic virotherapy. Nat. Biotech. 30, 658–670 (2012).

    Article  CAS  Google Scholar 

  183. Prestwich, R. J. et al. Oncolytic viruses: a novel form of immunotherapy. Expert Rev. Anticancer Ther. 8, 1581–1588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dai, M. H. et al. Oncolytic vaccinia virus in combination with radiation shows synergistic antitumor efficacy in pancreatic cancer. Cancer Lett. 344, 282–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Kyula, J. N. et al. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling. Oncogene 33, 1700–1712 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Harrington, K. J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 16, 4005–4015 (2010). This study looks at using oncolytic virus with immunomodulation and radiotherapy and chemotherapy to treat resistant HNSCC, demonstrating the combinatorial possibilities available with oncoviral therapy in treating resistant cancers.

    Article  CAS  PubMed  Google Scholar 

  187. Miyamoto, S. et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 72, 2609–2621 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Hu, J. C. et al. A Phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737–6747 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Zeng, J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  192. Chi, K. H. et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J. Immunother. 28, 129–135 (2005).

    Article  PubMed  Google Scholar 

  193. Gulley, J. L. et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 11, 3353–3362 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Kim, Y. H. et al. Phase I trial of a Toll-like receptor 9 agonist, PF-3512676 (CPG 7909), in patients with treatment-refractory, cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 63, 975–983 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Seung, S. K. et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2 — tumor and immunological responses. Sci. Transl Med. 4, 137ra74 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Cancer Research UK programme grants C46/A10588 and C7224/A13407, the Wellcome Trust, the NIHR Royal Marsden/Institute of Cancer Research Biomedical Research Centre, Oracle Cancer Trust, Rosetrees Trust and Anthony Long Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly E. Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Glossary

COMMA-D cells

An epithelial cell line derived from the mammary tissue of a mid-pregnant BALB/c mouse, which exhibits many characteristics distinctive of normal mammary epithelial cells.

Atherosclerosis

Thickening of the artery wall as a result of white blood cell invasion and accumulation.

Medial necrosis

Necrosis of the middle portion of vessel walls (anatomically called the tunica media).

Vessel co-option

A mechanism by which tumours obtain a blood supply by hijacking the existing vasculature.

Microvascular injury

Injury to the fine network of blood vessels and capillaries that results in changed patterns of blood flow.

Desmoplastic reaction

A stromal reaction that can be induced by tissue injury, wound repair or cancer growth. Increased extracellular matrix and growth factor production and secretion result in the formation of scar-like fibrotic tissue.

Adaptive immunity

A carefully regulated, adaptable, specific immune response comprising humoral- and cell-mediated components. It is capable of both systemic actions and immunological memory to specific stimuli. It is triggered by known antigens or by appropriate antigen presentation from the innate immune system.

Tumour associated macrophages

(TAMs). Macrophages within the tumour microenvironment; they are generally immunosuppressive and resemble the alternatively activated M2 macrophage.

Regulatory T cells

(TReg cells). A T cell subset that exerts immunosuppressive and tolerizing effects. TReg cells have an important role in cancer immune editing, in the maintenance of a permissive cancer microenvironment and in preventing effective adaptive immune recognition of tumour cells.

Innate immune system

The initial immune response that occurs in a generic manner to inflammatory stimuli, comprising complement activation and immune cell recruitment and activation. It coordinates the activation of the adaptive immune system by antigen presentation.

Direct and indirect radiation effects

Radiation damage can be divided into direct effects, where the damage is a result of the ionizing radiation itself, and indirect effects, which refer to the resultant changes in cellular pathways as a result of radiation: for example, as a result of reactive oxygen species.

Damage-associated molecular patterns

(DAMPs). Stimuli released by stressed, dying or injured cells that may trigger an inflammatory response by the activation of a number of pattern recognition receptors.

Pathogen-associated molecular patterns

(PAMPs). Signalling from pathogens by particular stimuli that can be recognized by immune cells, leading to an inflammatory response.

Immunogenic cell death

Cell death that triggers an immune reaction by DAMP–PRR signalling. This may occur as a result of different types of tissue damage; for example, damage caused by radiotherapy or chemotherapy.

Immune tolerization

The recognition of 'self' and 'non-self' during antigen presentation is important and carefully regulated to prevent autoimmunity, it is the process of recognizing antigens as 'self'.

Abscopal effects

Irradiation of tumour cells or the adjacent extracellular matrix can induce biologically relevant changes in distant cells, which may or may not have been irradiated themselves. These are distinguished from bystander (which refers to changes affecting nearby unirradiated cells) and cohort effects (which refer to changes affecting off-target irradiated cells).

Eccrine

A type of tumour from secretory sweat glands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, H., Paget, J., Khan, A. et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15, 409–425 (2015). https://doi.org/10.1038/nrc3958

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3958

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer