Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triple-negative breast cancer in African-American women: disparities versus biology

Abstract

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects BRCA1 mutation carriers and young women of African origin. There is evidence that African-American women with TNBC have worse clinical outcomes than women of European descent. However, it is unclear whether survival differences persist after adjusting for disparities in access to health-care treatment, co-morbid disease and income. It remains controversial whether TNBC in African-American women is a molecularly distinct disease or whether African-American women have a higher incidence of aggressive biology driven by disparities: there is evidence in support of both. Understanding the relative contributions of biology and disparities is essential for improving the poor survival rate of African-American women with TNBC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: TNBC in African-American compared with European-American women.
Figure 2: Proposed model of how disparities might drive signalling pathways associated with aggressive biology in TNBC.
Figure 3: Proposed model of genetic and epigenetic mechanisms that link unique DNA sequences and disparities with genomic instability, loss of BRCA1 function and aggressive TNBC biology in women of African descent.
Figure 4: Proposed model depicting the intersection of disparities and aggressive biology in African-American women with TNBC.

References

  1. 1

    Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  CAS  Google Scholar 

  2. 2

    Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Lund, M. J. et al. Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res. Treat. 113, 357–370 (2009).

    Article  PubMed  Google Scholar 

  5. 5

    Bauer, K. R., Brown, M., Cress, R. D., Parise, C. A. & Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109, 1721–1728 (2007).

    Article  PubMed  Google Scholar 

  6. 6

    Albain, K. S., Unger, J. M., Crowley, J. J., Coltman, C. A. Jr & Hershman, D. L. Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J. Natl Cancer Inst. 101, 984–992 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Woodward, W. A. et al. African-American race is associated with a poorer overall survival rate for breast cancer patients treated with mastectomy and doxorubicin-based chemotherapy. Cancer 107, 2662–2668 (2006).

    Article  PubMed  Google Scholar 

  8. 8

    Shen, Y. et al. Are there racial differences in breast cancer treatments and clinical outcomes for women treated at M. D. Anderson Cancer Center? Breast Cancer Res. Treat. 102, 347–356 (2007).

    Article  PubMed  Google Scholar 

  9. 9

    Dawood, S. et al. Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J. Clin. Oncol. 27, 220–226 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Dean-Colomb, W. et al. Transcriptional profiles of triple receptor-negative breast cancer: are Caucasian, Hispanic, and African- American women different? J. Clin. Oncol. 26, S22014 (2008).

    Article  Google Scholar 

  11. 11

    Vona-Davis, L. & Rose, D. P. The influence of socioeconomic disparities on breast cancer tumor biology and prognosis: a review. J. Womens Health (Larchmt) 18, 883–893 (2009).

    Article  Google Scholar 

  12. 12

    Danforth, D. N. Jr Disparities in breast cancer outcomes between Caucasian and African American women: a model for describing the relationship of biological and nonbiological factors. Breast Cancer Res. 15, 208 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Morris, G. J. et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Cancer 110, 876–884 (2007).

    Article  PubMed  Google Scholar 

  16. 16

    Stead, L. A. et al. Triple-negative breast cancers are increased in black women regardless of age or body mass index. Breast Cancer Res. 11, R18 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Stark, A. et al. African ancestry and higher prevalence of triple-negative breast cancer: findings from an international study. Cancer 116, 4926–4932 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Fregene, A. & Newman, L. A. Breast cancer in sub-Saharan Africa: how does it relate to breast cancer in African-American women? Cancer 103, 1540–1550 (2005).

    Article  PubMed  Google Scholar 

  19. 19

    Boyle, P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann. Oncol. 23 (Suppl. 6), vi7–vi12 (2012).

    PubMed  Google Scholar 

  20. 20

    Huo, D. et al. Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J. Clin. Oncol. 27, 4515–4521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    McCormack, V. A. et al. Breast cancer receptor status and stage at diagnosis in over 1,200 consecutive public hospital patients in Soweto, South Africa: a case series. Breast Cancer Res. 15, R84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Chlebowski, R. T. et al. Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J. Natl Cancer Inst. 97, 439–448 (2005).

    Article  PubMed  Google Scholar 

  23. 23

    Bradley, C. J., Given, C. W. & Roberts, C. Race, socioeconomic status, and breast cancer treatment and survival. J. Natl Cancer Inst. 94, 490–496 (2002).

    Article  PubMed  Google Scholar 

  24. 24

    Ayanian, J. Z., Kohler, B. A., Abe, T. & Epstein, A. M. The relation between health insurance coverage and clinical outcomes among women with breast cancer. N. Engl. J. Med. 329, 326–331 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    McWhorter, W. P. & Mayer, W. J. Black/white differences in type of initial breast cancer treatment and implications for survival. Am. J. Public Health 77, 1515–1517 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Furberg, H., Millikan, R., Dressler, L., Newman, B. & Geradts, J. Tumor characteristics in African American and white women. Breast Cancer Res. Treat. 68, 33–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Servick, K. Breast cancer: a world of differences. Science 343, 1452–1453 (2014).

    Article  PubMed  Google Scholar 

  28. 28

    Newman, L. A. et al. Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status. J. Clin. Oncol. 24, 1342–1349 (2006).

    Article  PubMed  Google Scholar 

  29. 29

    Hall, J. M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Yoshida, K. & Miki, Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 95, 866–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Antoniou, A. C. & Easton, D. F. Models of genetic susceptibility to breast cancer. Oncogene 25, 5898–5905 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Mavaddat, N. et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomarkers Prev. 21, 134–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Nanda, R. et al. Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294, 1925–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Olopade, O. I. et al. Breast cancer genetics in African Americans. Cancer 97, 236–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Greenup, R. et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann. Surg. Oncol. 20, 3254–3258 (2013).

    Article  PubMed  Google Scholar 

  36. 36

    Oluwagbemiga, L. A., Oluwole, A. & Kayode, A. A. Seventeen years after BRCA1: what is the BRCA mutation status of the breast cancer patients in Africa? — a systematic review. SpringerPlus 1, 83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Szabo, C. I. & King, M. C. Population genetics of BRCA1 and BRCA2. Am. J. Hum. Genet. 60, 1013–1020 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Yawitch, T. M., van Rensburg, E. J., Mertz, M. & Falkson, C. I. Absence of commonly recurring BRCA1 mutations in black South African women with breast cancer. S. Afr. Med. J. 90, 788 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Gao, Q. et al. Protein truncating BRCA1 and BRCA2 mutations in African women with pre-menopausal breast cancer. Hum. Genet. 107, 192–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Fackenthal, J. D. et al. Complete allelic analysis of BRCA1 and BRCA2 variants in young Nigerian breast cancer patients. J. Med. Genet. 42, 276–281 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Zhang, B. et al. Evidence for an ancient BRCA1 mutation in breast cancer patients of Yoruban ancestry. Fam. Cancer 8, 15–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Zhang, J., Fackenthal, J. D., Huo, D., Zheng, Y. & Olopade, O. I. Searching for large genomic rearrangements of the BRCA1 gene in a Nigerian population. Breast Cancer Res. Treat. 124, 573–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Churpek, J. E. et al. Inherited mutations in breast cancer genes in African-American breast cancer patients revealed by targeted genomic capture and next-generation sequencing. J. Clin. Oncol. 31, CRA1501 (2013).

    Article  Google Scholar 

  44. 44

    Antoniou, A. C. et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 371, 497–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Zheng, Y., Zhang, J., Niu, Q., Huo, D. & Olopade, O. I. Novel germline PALB2 truncating mutations in African American breast cancer patients. Cancer 118, 1362–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Haiman, C. A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genet. 43, 1210–1214 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Ruiz-Narvaez, E. A. et al. Polymorphisms in the TOX3/LOC643714 locus and risk of breast cancer in African-American women. Cancer Epidemiol. Biomarkers Prev. 19, 1320–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Palmer, J. R. et al. Genetic susceptibility loci for subtypes of breast cancer in an African American population. Cancer Epidemiol. Biomarkers Prev. 22, 127–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Field, L. A. et al. Identification of differentially expressed genes in breast tumors from African American compared with Caucasian women. Cancer 118, 1334–1344 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Martin, D. N. et al. Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS ONE 4, e4531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  52. 52

    Stewart, P. A., Luks, J., Roycik, M. D., Sang, Q. X. & Zhang, J. Differentially expressed transcripts and dysregulated signaling pathways and networks in African American breast cancer. PLoS ONE 8, e82460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Sturtz, L. A., Melley, J., Mamula, K., Shriver, C. D. & Ellsworth, R. E. Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer. BMC Cancer 14, 62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Lindner, R. et al. Molecular phenotypes in triple negative breast cancer from African American patients suggest targets for therapy. PLoS ONE 8, e71915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    De Brot, M., Rocha, R. M., Soares, F. A. & Gobbi, H. Prognostic impact of the cancer stem cell related markers ALDH1 and EZH2 in triple negative and basal-like breast cancers. Pathology 44, 303–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Hussein, Y. R. et al. Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer. Hum. Pathol. 43, 1638–1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Gonzalez, M. E. et al. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res. 71, 2360–2370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Pang, J. et al. Invasive breast carcinomas in Ghana: high frequency of high grade, basal-like histology and high EZH2 expression. Breast Cancer Res. Treat. 135, 59–66 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Pietersen, A. M. et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 10, R109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    King, T. D., Suto, M. J. & Li, Y. The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J. Cell Biochem. 113, 13–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Wend, P. et al. WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol. Med. 5, 264–279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Getz, J. et al. Differential gene expression in key oncolytic pathways between node-matched Caucasian-American, African-American, and East African triple-negative breast cancer patients. Cancer Res. 74, 2368 (2014).

    Google Scholar 

  64. 64

    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10, R25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Nalwoga, H., Arnes, J. B., Wabinga, H. & Akslen, L. A. Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br. J. Cancer 102, 369–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Silber, J. H. et al. Characteristics associated with differences in survival among black and white women with breast cancer. JAMA 310, 389–397 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Black, S. A. Diabetes, diversity, and disparity: what do we do with the evidence? Am. J. Public Health 92, 543–548 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Hood, E. Dwelling disparities: how poor housing leads to poor health. Environ. Health Perspect. 113, A310–A317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Lee, E. et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J. Clin. Oncol. 29, 4373–4380 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Pierobon, M. & Frankenfeld, C. L. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res. Treat. 137, 307–314 (2013).

    Article  PubMed  Google Scholar 

  73. 73

    Kwan, M. L. et al. Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res. 11, R31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA 106, 13820–13825 (2009).

    Article  PubMed  Google Scholar 

  75. 75

    Hartman, Z. C. et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73, 3470–3480 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Hall, I. J., Moorman, P. G., Millikan, R. C. & Newman, B. Comparative analysis of breast cancer risk factors among African-American women and White women. Am. J. Epidemiol. 161, 40–51 (2005).

    Article  PubMed  Google Scholar 

  77. 77

    Shinde, S. S. et al. Higher parity and shorter breastfeeding duration: association with triple-negative phenotype of breast cancer. Cancer 116, 4933–4943 (2010).

    Article  PubMed  Google Scholar 

  78. 78

    Palmer, J. R. et al. Parity and lactation in relation to estrogen receptor negative breast cancer in African American women. Cancer Epidemiol. Biomarkers Prev. 20, 1883–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Lyons, T. R. et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nature Med. 17, 1109–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Gonzalez-Suarez, I. et al. A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J. 30, 3383–3396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Harris, S. S. & Dawson-Hughes, B. Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am. J. Clin. Nutr. 67, 1232–1236 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Clemens, T. L., Adams, J. S., Henderson, S. L. & Holick, M. F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1, 74–76 (1982).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Lancaster, K. J. & Bermudez, O. I. Beginning a discussion of nutrition and health disparities. Am. J. Clin. Nutr. 93, 1161S–1162S (2011).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Murphy, S. K., Huang, Z. & Hoyo, C. Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS ONE 7, e40924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Ho, S. M. et al. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 53, 289–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Pozharny, Y., Lambertini, L., Clunie, G., Ferrara, L. & Lee, M. J. Epigenetics in women's health care. Mt. Sinai J. Med. 77, 225–235 (2010).

    Article  PubMed  Google Scholar 

  89. 89

    Smeester, L. et al. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury. Genes (Basel) 5, 477–496 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health/National Cancer Institute (NIH/NCI) grants R01CA155664, R01CA158668, R01CA170851 (to V.L.S.) and CA155664-03S1 (to C.S.), a Susan G. Komen Breast Promise Award (KG091020; to V.L.S.) and a V-Foundation Award (to V.L.S.). This work was also funded by a gift from F. Stanback and A. Stanback. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victoria L. Seewaldt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Black Women’s Health Study

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dietze, E., Sistrunk, C., Miranda-Carboni, G. et al. Triple-negative breast cancer in African-American women: disparities versus biology. Nat Rev Cancer 15, 248–254 (2015). https://doi.org/10.1038/nrc3896

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing