Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling bladder cancer in mice: opportunities and challenges

Key Points

  • Bladder cancers arise in the urothelium, a specialized epithelium that comprises basal, intermediate and superficial (umbrella) cells. Bladder cancer represents a heterogeneous set of tumours that vary in histopathology, molecular alterations and potentially cells of origin; the vast majority (more than 90%) are urothelial carcinomas, which are the subject of this Review.

  • Basal cells can serve as urothelial progenitors as well as cells of origin of bladder cancer, particularly of more aggressive subtypes; however, other urothelial cell types can also serve as progenitors in normal bladder as well as cells of origin of bladder cancer, potentially of different subtypes.

  • Urothelial carcinomas fall into two major categories: most (approximately 75%) are non-muscle-invasive, which include low-grade superficial (or papillary) and high-grade carcinoma in situ; the remainder (approximately 25%) are muscle-invasive.

  • Most non-muscle-invasive bladder cancers, particularly low-grade tumours, have favourable prognosis; these can be managed clinically with bladder-sparing treatments, which are generally effective but very costly.

  • Muscle-invasive bladder cancers have relatively poor prognosis; those that have not metastasized are often treated by cystectomy (surgical removal of the bladder), which is reasonably effective (5-year survival of approximately 50%) but associated with high morbidity.

  • Metastatic bladder cancer has a very poor prognosis (5-year survival of approximately 15%) and is treated using chemotherapy, which is neither well-tolerated nor highly effective. Unlike many other cancers, neither the prognosis nor treatment of bladder cancer has improved substantially in the past 20 years, and bladder cancer remains a major cause of cancer mortality.

  • The molecular pathways that give rise to low-grade non-muscle-invasive versus high-grade muscle-invasive bladder cancer are distinct but not mutually exclusive. The recent elucidation of genetic and genomic alterations that are prevalent in muscle-invasive bladder cancer provides new avenues for understanding the underlying molecular mechanisms, as well as new targets for therapeutic intervention.

  • Currently available in vivo models of bladder cancer include carcinogen-based and genetically engineered mouse (GEM) models, as well as orthotopic and renal grafting, each of which has advantages and limitations. Bladder cancer is relatively under-represented by GEM models, particularly those that model more aggressive phenotypes.

  • The mouse bladder may be relatively recalcitrant to developing invasive tumours, which has made it challenging to develop GEM models. Other challenges to developing GEM models include inadequate approaches for restricting gene targeting to the urothelium, and particularly to selected cells of origin. Improved GEM models will lead to opportunities for preclinical evaluation of new treatment options for bladder cancer.

Abstract

The prognosis and treatment of bladder cancer have improved little in the past 20 years. Bladder cancer remains a debilitating and often fatal disease, and is among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as to affect its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described, and in particular, few that develop invasive cancer phenotypes. This Review focuses on opportunities for improving the landscape of mouse models of bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bladder anatomy.
Figure 2: Clinical stages of bladder cancer.

Similar content being viewed by others

References

  1. Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder cancer. Lancet 374, 239–249 (2009). This paper provides a comprehensive overview of bladder cancer.

    Article  CAS  PubMed  Google Scholar 

  2. Dinney, C. P. et al. Focus on bladder cancer. Cancer Cell 6, 111–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Prasad, S. M., Decastro, G. J. & Steinberg, G. D. & Medscape. Urothelial carcinoma of the bladder: definition, treatment and future efforts. Nature Rev. Urol. 8, 631–642 (2011).

    Article  CAS  Google Scholar 

  4. Botteman, M. F., Pashos, C. L., Redaelli, A., Laskin, B. & Hauser, R. The health economics of bladder cancer: a comprehensive review of the published literature. PharmacoEconomics 21, 1315–1330 (2003).

    Article  PubMed  Google Scholar 

  5. Hicks, R. M. The mammalian urinary bladder: an accommodating organ. Biol. Rev. Camb.Phil. Soc. 50, 215–246 (1975). This is a classic review of bladder anatomy.

    Article  CAS  Google Scholar 

  6. Bradley, W. E. & Long, D. M. Morphology of the developing mammalian bladder. Invest. Urol. 7, 66–73 (1969).

    CAS  PubMed  Google Scholar 

  7. Baskin, L. S., Hayward, S. W., Young, P. F. & Cunha, G. R. Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anatom. 155, 163–171 (1996). This paper provides a classic review of bladder development.

    Article  CAS  Google Scholar 

  8. De La Rosette, J., Smedts, F., Schoots, C., Hoek, H. & Laguna, P. Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. J. Urol. 168, 709–717 (2002).

    Article  PubMed  Google Scholar 

  9. Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol. 297, F1477–E1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T. & Cordon-Cardo, C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol. 28, 401–408 (2010). This paper reviews the relationship of bladder development and bladder cancer.

    Article  CAS  PubMed  Google Scholar 

  11. Sun, W., Wilhelmina Aalders, T. & Oosterwijk, E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 393, 84–92 (2014). This paper describes bladder progenitors, showing their prevalence in the trigone.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Messier, B. & Leblond, C. P. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am. J. Anat. 106, 247–285 (1960).

    Article  CAS  PubMed  Google Scholar 

  14. Jost, S. P. & Potten, C. S. Urothelial proliferation in growing mice. Cell Tissue Kinet. 19, 155–160 (1986). This study showed that the urothelium has a slow turnover.

    CAS  PubMed  Google Scholar 

  15. Cooper, E. H., Cowen, D. M. & Knowles, J. C. The recovery of mouse bladder epithelium after injury by 4-ethylsulphonylnaphthalene-1-sulphonamide. J. Pathol. 108, 151–156 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Lavelle, J. et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am. J. Physiol. Renal Physiol. 283, F242–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ho, P. L., Kurtova, A. & Chan, K. S. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nature Rev. Urol. 9, 583–594 (2012).

    Article  CAS  Google Scholar 

  20. Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colopy, S. A., Bjorling, D. E., Mulligan, W. A. & Bushman, W. A population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration. Dev. Dyn. 243, 988–998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karni-Schmidt, O. et al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am. J. Pathol. 178, 1350–1360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Signoretti, S. et al. p63 regulates commitment to the prostate cell lineage. Proc. Natl Acad. Sci. USA 102, 11355–11360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaisa, N. T. et al. The human urothelium consists of multiple clonal units, each maintained by a stem cell. J. Pathol. 225, 163–171 (2011). In this study, clonal analyses of human bladder progenitors were carried out by analysing mitochondrial DNA.

    Article  CAS  PubMed  Google Scholar 

  25. Dahm, P. & Gschwend, J. E. Malignant non-urothelial neoplasms of the urinary bladder: a review. Eur. Urol. 44, 672–681 (2003).

    Article  PubMed  Google Scholar 

  26. Williamson, S. R. et al. Diagnosis, evaluation and treatment of carcinoma in situ of the urinary bladder: the state of the art. Crit. Rev. Oncol.Hematol. 76, 112–126 (2010).

    Article  PubMed  Google Scholar 

  27. Nese, N., Gupta, R., Bui, M. H. & Amin, M. B. Carcinoma in situ of the urinary bladder: review of clinicopathologic characteristics with an emphasis on aspects related to molecular diagnostic techniques and prognosis. J. Natl Compr. Canc. Netw. 7, 48–57 (2009).

    Article  PubMed  Google Scholar 

  28. Shin, K. et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nature Cell Biol. 16, 469–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. He, X. et al. Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells 27, 1487–1495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009). This was one of the first studies to isolate bladder cancer stem cells.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Volkmer, J. P. et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl Acad. Sci. USA 109, 2078–2083 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014). This paper presents results of TCGA analyses of invasive bladder cancer.

  33. Choi, W. et al. Identification of distinct Basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014). This paper describes molecular subtypes of bladder cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, W. et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nature Rev. Urol. 11, 400–410 (2014).

    Article  CAS  Google Scholar 

  36. Van Batavia, J. et al. Bladder cancers arise from distinct urothelial sub-populations. Nature Cell Biol. 16, 982–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Dancik, G. M., Owens, C. R., Iczkowski, K. A. & Theodorescu, D. A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32, 974–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Resnick, M. J., Bassett, J. C. & Clark, P. E. Management of superficial and muscle-invasive urothelial cancers of the bladder. Curr. Opin. Oncol. 25, 281–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Clark, P. E. et al. Bladder cancer. J. Natl Compr. Canc. Netw. 11, 446–475 (2013). This paper provides a summary of treatment options for bladder cancer.

    Article  CAS  PubMed  Google Scholar 

  40. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nature Rev. Urol. 11, 153–162 (2014).

    Article  CAS  Google Scholar 

  41. Gontero, P. et al. The role of bacillus Calmette-Guerin in the treatment of non-muscle-invasive bladder cancer. Eur. Urol. 57, 410–429 (2010).

    Article  PubMed  Google Scholar 

  42. Herr, H. W. & Morales, A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J. Urol. 179, 53–56 (2008).

    Article  PubMed  Google Scholar 

  43. Barlow, L. J., Seager, C. M., Benson, M. C. & McKiernan, J. M. Novel intravesical therapies for non-muscle-invasive bladder cancer refractory to BCG. Urol. Oncol. 28, 108–111 (2010).

    Article  PubMed  Google Scholar 

  44. Dash, A. et al. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer 113, 2471–2477 (2008).

    Article  PubMed  Google Scholar 

  45. Zargar, H. et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 23 Sept 2014 (10.1016/j.eururo.2014.09.007).

  46. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Singer, S. et al. Quality of life in patients with muscle invasive and non-muscle invasive bladder cancer. Support.Care Cancer 21, 1383–1393 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Somani, B. K., Gimlin, D., Fayers, P. & N'Dow, J. Quality of life and body image for bladder cancer patients undergoing radical cystectomy and urinary diversion—a prospective cohort study with a systematic review of literature. Urology 74, 1138–1143 (2009).

    Article  PubMed  Google Scholar 

  49. Wu, X., Hildebrandt, M. A. & Chang, D. W. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev. 28, 269–280 (2009).

    Article  PubMed  Google Scholar 

  50. Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A. & Abnet, C. C. Association between smoking and risk of bladder cancer among men and women. JAMA 306, 737–745 (2011). This paper provides analyses of the link between smoking and the risk of bladder cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kiriluk, K. J., Prasad, S. M., Patel, A. R., Steinberg, G. D. & Smith, N. D. Bladder cancer risk from occupational and environmental exposures. Urol. Oncol. 30, 199–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013).

    Article  PubMed  Google Scholar 

  53. Mitra, A. P. & Cote, R. J. Molecular pathogenesis and diagnostics of bladder cancer. Ann. Rev. Pathol. 4, 251–285 (2009). This is a comprehensive review of the molecular biology, risk factors and subtypes of bladder cancer.

    Article  CAS  Google Scholar 

  54. Crivelli, J. J. et al. Effect of smoking on outcomes of urothelial carcinoma: a systematic review of the literature. Eur. Urol. 65, 742–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Baskin, L. S., Hayward, S. W., Young, P. & Cunha, G. R. Role of mesenchymal-epithelial interactions in normal bladder development. J. Urol. 156, 1820–1827 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Marcinkiewicz, K. et al. The androgen receptor and stem cell pathways in prostate and bladder cancers (review). Int. J. Oncol. 40, 5–12 (2012).

    CAS  PubMed  Google Scholar 

  57. Hsu, J. W. et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 182, 1811–1820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, C. et al. Constitutive β-catenin activation induces male-specific tumorigenesis in the bladder urothelium. Cancer Res. 73, 5914–5925 (2013). This paper provides evidence that the prevalence of males to develop bladder cancer may be due to the androgen receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knowles, M. A. Molecular pathogenesis of bladder cancer. Int. J. Clin. Oncol. 13, 287–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Goebell, P. J. & Knowles, M. A. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. 28, 409–428 (2010).

    Article  PubMed  Google Scholar 

  61. Wu, X. R. Urothelial tumorigenesis: a tale of divergent pathways. Nature Rev. Cancer 5, 713–725 (2005).

    Article  CAS  Google Scholar 

  62. Esrig, D. et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. New Engl. J. Med. 331, 1259–1264 (1994). This was one of the first studies to show the relevance of p53 mutation for bladder cancer.

    Article  CAS  PubMed  Google Scholar 

  63. Dyrskjot, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nature Genet. 33, 90–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Sanchez-Carbayo, M. et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am. J. Pathol. 163, 505–516 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blaveri, E. et al. Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin. Cancer Res. 11, 7012–7022 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, J. H. et al. Alterations in transcription clusters underlie development of bladder cancer along papillary and nonpapillary pathways. Lab. Invest. 85, 532–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Mitra, A. P. et al. Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J. Clin. Oncol. 27, 3929–3937 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Riester, M. et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin. Cancer Res. 18, 1323–1333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lauss, M., Ringner, M. & Hoglund, M. Prediction of stage, grade, and survival in bladder cancer using genome-wide expression data: a validation study. Clin. Cancer Res. 16, 4421–4433 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Zieger, K., Marcussen, N., Borre, M., Orntoft, T. F. & Dyrskjot, L. Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. International journal of cancer. J. Int. Cancer 125, 2095–2103 (2009).

    Article  CAS  Google Scholar 

  72. Hurst, C. D., Platt, F. M., Taylor, C. F. & Knowles, M. A. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin. Cancer Res. 18, 5865–5877 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lindgren, D. et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One 7, e38863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Nordentoft, I. et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 7, 1649–1663 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Morrison, C. D. et al. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc. Natl Acad. Sci. USA 111, E672–E681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ross, J. S. et al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Modern Pathol. 27, 271–280 (2014).

    Article  CAS  Google Scholar 

  79. Guo, G. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nature Genet. 45, 1459–1463 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Cazier, J. B. et al. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nature Commun. 5, 3756 (2014).

    Article  CAS  Google Scholar 

  81. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221 (2012). This paper identified TSC1 as a key 'actionable' target for bladder cancer.

  83. Wagle, N. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 4, 546–553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    Article  CAS  PubMed  Google Scholar 

  85. Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298, 343–347 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Gust, K. M. et al. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol. Cancer Ther. 12, 1245–1254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rebouissou, S. et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci. Transl. Med. 6, 244ra291 (2014).

    Article  CAS  Google Scholar 

  89. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  92. Degraff, D. J. et al. Current preclinical models for the advancement of translational bladder cancer research. Mol. Cancer Ther. 12, 121–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Ahmad, I., Sansom, O. J. & Leung, H. Y. Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Dis. Model Mech. 5, 323–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ding, J. et al. Current animal models of bladder cancer: Awareness of translatability (Review). Exp. Ther. Med. 8, 691–699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Druckrey, H. et al. Selective induction of bladder cancer in rats by dibutyl- and N-butyl-N-butanol(4)-nitrosamine. Zeitschrift Krebsforschung 66, 280–290 (1964). This was one of the first descriptions of carcinogenesis-induced bladder cancer.

    Article  CAS  Google Scholar 

  96. Hicks, R. M. & Wakefield, J. S. Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea. I. Histology. Chem. Biol. Interact. 5, 139–152 (1972).

    Article  CAS  PubMed  Google Scholar 

  97. Fukushima, S., Hirose, M., Tsuda, H., Shirai, T. & Hirao, K. Histological classification of urinary bladder cancers in rats induced by N-butyl-n-(4-hydroxybutyl)nitrosamine. Gann. 67, 81–90 (1976).

    CAS  PubMed  Google Scholar 

  98. Cohen, S. M. Urinary bladder carcinogenesis. Toxicol. Pathol. 26, 121–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Soloway, M. S. Single and combination chemotherapy for primary murine bladder cancer. Cancer 36, 333–340 (1975).

    Article  CAS  PubMed  Google Scholar 

  100. Vasconcelos-Nobrega, C., Colaco, A., Lopes, C. & Oliveira, P. A. Review: BBN as an urothelial carcinogen. In Vivo 26, 727–739 (2012).

    CAS  PubMed  Google Scholar 

  101. He, Z., Kosinska, W., Zhao, Z. L., Wu, X. R. & Guttenplan, J. B. Tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine as the basis for urothelial carcinogenesis. Mut. Res. 742, 92–95 (2012).

    Article  CAS  Google Scholar 

  102. Yamamoto, S. et al. Frequent mutations of the p53 gene and infrequent H- and K-ras mutations in urinary bladder carcinomas of NON/Shi mice treated with N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis 16, 2363–2368 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Kim, S. K. et al. Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model. PLoS One 6, e26131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Williams, P. D., Lee, J. K. & Theodorescu, D. Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia 10, 838–846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weldon, T. E. & Soloway, M. S. Susceptibility of urothelium to neoplastic cellular implantation. Urology 5, 824–827 (1975).

    Article  CAS  PubMed  Google Scholar 

  106. Oshinsky, G. S., Chen, Y., Jarrett, T., Anderson, A. E. & Weiss, G. H. A model of bladder tumor xenografts in the nude rat. J. Urol. 154, 1925–1929 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Gunther, J. H. et al. Optimizing syngeneic orthotopic murine bladder cancer (MB49). Cancer Res. 59, 2834–2837 (1999).

    CAS  PubMed  Google Scholar 

  108. Xiao, Z. et al. Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model. Br. J. Cancer 81, 638–646 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chan, E. S. et al. Optimizing orthotopic bladder tumor implantation in a syngeneic mouse model. J. Urol. 182, 2926–2931 (2009).

    Article  PubMed  Google Scholar 

  110. Dobek, G. L. & Godbey, W. T. An orthotopic model of murine bladder cancer. J. Vis. Exp. 6, 2535 (2011).

    Google Scholar 

  111. Oottamasathien, S. et al. Bladder tissue formation from cultured bladder urothelium. Dev. Dyn. 235, 2795–2801 (2006).

    Article  PubMed  Google Scholar 

  112. Puzio-Kuter, A. M. et al. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev. 23, 675–680 (2009). This paper describes a unique model of invasive, metasatic bladder cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kerbel, R. S., Cornil, I. & Theodorescu, D. Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor growth and metastasis. Cancer Metastasis Rev. 10, 201–215 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Black, P. C. et al. Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis. BJU Int. 106, 1799–1804 (2010).

    Article  PubMed  Google Scholar 

  115. van der Horst, G. et al. Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis. Eur. Urol. 60, 337–343 (2011).

    Article  PubMed  Google Scholar 

  116. Chan, E. S., Patel, A. R., Hansel, D. E., Larchian, W. A. & Heston, W. D. Sunitinib malate provides activity against murine bladder tumor growth and invasion in a preclinical orthotopic model. Urology 80, 736 (2012).

    Article  PubMed  Google Scholar 

  117. Chen, S. C., Henry, D. O., Hicks, D. G., Reczek, P. R. & Wong, M. K. Intravesical administration of plasminogen activator inhibitor type-1 inhibits in vivo bladder tumor invasion and progression. J. Urol. 181, 336–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nature Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  Google Scholar 

  119. Park, B. et al. Development and characterization of a bladder cancer xenograft model using patient-derived tumor tissue. Cancer Sci. 104, 631–638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cirone, P., Andresen, C. J., Eswaraka, J. R., Lappin, P. B. & Bagi, C. M. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother. Pharmacol. 73, 525–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  122. Politi, K. & Pao, W. How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273–2281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abate-Shen, C. & Pandolfi, P. P. Effective utilization and appropriate selection of genetically engineered mouse models for translational integration of mouse and human trials. Cold Spring Harb. Protoc. 2013, pdb.top078774 (2013).

    Article  Google Scholar 

  124. Hanahan, D., Wagner, E. F. & Palmiter, R. D. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 21, 2258–2270 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T. & Wu, X. R. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res. 59, 3512–3517 (1999). This paper reported the first transgenic 'oncomouse' model of bladder cancer.

    CAS  PubMed  Google Scholar 

  126. Ayala de la Pena, F. et al. Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. J. Biol. Chem. 286, 20778–20787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stone, R. 2nd et al. Identification of genes correlated with early-stage bladder cancer progression. Cancer Prev. Res. 3, 776–786 (2010).

    Article  CAS  Google Scholar 

  128. Grippo, P. J. & Sandgren, E. P. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am. J. Pathol. 157, 805–813 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. He, F. et al. Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Res. 69, 9413–9421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Z. T. et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20, 1973–1980 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Cheng, J. et al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res. 62, 4157–4163 (2002).

    CAS  PubMed  Google Scholar 

  132. Garcia-Espana, A., Salazar, E., Sun, T. T., Wu, X. R. & Pellicer, A. Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: implications for tumor behavior. Cancer Res. 65, 1150–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Mo, L. et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J. Clin. Invest. 117, 314–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gao, J. et al. p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene 23, 687–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Ahmad, I. et al. β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene 30, 178–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Ahmad, I. et al. Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis. Cell Death Dis. 2, e124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ahmad, I. et al. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder. Dis. Model Mech. 4, 548–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rampias, T. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nature Med. 20, 1199–1205 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Foth, M. et al. Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice. J. Pathol. 233, 148–158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shorning, B. Y., Griffiths, D. & Clarke, A. R. Lkb1 and Pten synergise to suppress mTOR-mediated tumorigenesis and epithelial-mesenchymal transition in the mouse bladder. PLoS One 6, e16209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsuruta, H. et al. Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Res. 66, 8389–8396 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Santos, M. et al. In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes bladder cancer. Cancer Res. 74, 6565–6577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang, X. et al. Simultaneous activation of Kras and inactivation of p53 induces soft tissue sarcoma and bladder urothelial hyperplasia. PLoS One 8, e74809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Seager, C. M. et al. Intravesical delivery of rapamycin suppresses tumorigenesis in a mouse model of progressive bladder cancer. Cancer Prev. Res. 2, 1008–1014 (2009). This is a preclinical evaluation of rapamycin using intravesical therapy that led to a novel clinical trial.

    Article  CAS  Google Scholar 

  145. Delto, J. C., Kobayashi, T., Benson, M., McKiernan, J. & Abate-Shen, C. Preclinical analyses of intravesical chemotherapy for prevention of bladder cancer progression. Oncotarget 4, 269–276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lin, J. H., Zhao, H. & Sun, T. T. A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc. Natl Acad. Sci. USA 92, 679–683 (1995). This paper provided the first description of Upk2 promoter expression in bladder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saam, J. R. & Gordon, J. I. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274, 38071–38082 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Bex, A., Vooijs, M., Horenblas, S. & Berns, A. Controlling gene expression in the urothelium using transgenic mice with inducible bladder specific Cre-lox recombination. J. Urol. 168, 2641–2644 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Seager, C., Puzio-Kuter, A. M., Cordon-Cardo, C., McKiernan, J. & Abate-Shen, C. Mouse models of human bladder cancer as a tool for drug discovery. Curr. Protoc. Pharmacol. Unit14.14 (2010).

  150. Yoo, L. I. et al. Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Res. 66, 1929–1939 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Ozaki, K. et al. High susceptibility of p53+/− knockout mice in N-butyl-N-(4-hydroxybutyl)nitrosamine urinary bladder carcinogenesis and lack of frequent mutation in residual allele. Cancer Res. 58, 3806–3811 (1998). This was one of the first studies to combine bladder carcinogenesis induction with a GEM model.

    CAS  PubMed  Google Scholar 

  152. Hamed, S. et al. Accelerated induction of bladder cancer in patched heterozygous mutant mice. Cancer Res. 64, 1938–1942 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Hoogervorst, E. M. et al. p53 heterozygosity results in an increased 2-acetylaminofluorene-induced urinary bladder but not liver tumor response in DNA repair-deficient Xpa mice. Cancer Res. 64, 5118–5126 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Hikosaka, A. et al. Susceptibility of p27kip1 knockout mice to urinary bladder carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine may not simply be due to enhanced proliferation. Int. J. Cancer 122, 1222–1228 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Ho, P. L., Lay, E. J., Jian, W., Parra, D. & Chan, K. S. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 72, 3135–3142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Said, N., Frierson, H. F., Sanchez-Carbayo, M., Brekken, R. A. & Theodorescu, D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J. Clin. Invest. 123, 751–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nishizawa, K. et al. Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis 32, 1459–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Hursting, S. et al. Urothelial overexpression of insulin-like growth factor-1 increases susceptibility to p-Cresidine-induced bladder carcinogenesis in transgenic mice. Mol. Carcinogen. 48, 671–677 (2009).

    Article  CAS  Google Scholar 

  159. Mo, L., Cheng, J., Lee, E. Y., Sun, T. T. & Wu, X. R. Gene deletion in urothelium by specific expression of Cre recombinase. Am. J. Physiol. Renal Physiol. 289, F562–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Shen, T. H. et al. A BAC-based transgenic mouse specifically expresses an inducible Cre in the urothelium. PLoS One 7, e35243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Al-Ahmadie, M. Castillo-Martin, G. Iyer, C. Mendelsohn and M. Shen for helpful comments on the manuscript. Work in the authors' laboratories is funded by a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (to T.K.), a grant from the Urology Care Foundation Research Scholars Program and Dornier MedTech (to T.B.O.), and funding from the National Cancer Institute and the T.J. Martell Foundation for Leukemia, Cancer and AIDS research (to C.A.S.). C.A.S. is is an American Cancer Society Research Professor supported in part by a generous gift from the F.M. Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory Abate-Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Non-muscle-invasive bladder cancer

Urothelial carcinomas that do not invade the bladder muscle.

Muscle-invasive bladder cancer

Urothelial carcinomas that invade the muscle layer.

Urothelium

The epithelium that lines the bladder; it comprises basal, intermediate and umbrella cell types.

Lamina propria

The layer of connective tissue that underlies the urothelium.

Detrusor muscle

The layer of smooth muscle that lines the bladder and controls the elimination of urine.

Uroplakin proteins

Transmembrane proteins that comprise the asymmetric unit membrane on the lumen-facing side of the umbrella cells, providing a barrier against the entry of urine.

Papillary tumours

Extrusions of the urothelium into the bladder lumen without invasion of the muscle layer.

Carcinoma in situ

(CIS). A flattened malignant transformation of the urothelium that is presumed to be a precursor of muscle-invasive bladder cancer.

Transurethral resection

(TUR). Endoscopic surgical removal of bladder tumours or lesions

Intravesical therapy

Delivery of interventional or therapeutic agents directly to the bladder lumen.

Bacillus Calmette–Guerin

(BCG). A form of immunotherapy; a front-line intravesical treatment for high-risk non-muscle-invasive bladder cancer.

Cystectomy

Surgical removal of the bladder; the front-line treatment for muscle-invasive bladder cancer.

Autochthonous

Arising within the individual, usually refers to tumours arising de novo in genetically engineered mouse models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Owczarek, T., McKiernan, J. et al. Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 15, 42–54 (2015). https://doi.org/10.1038/nrc3858

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3858

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer