Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer

Key Points

  • TYRO3, AXL and MERTK (TAM) rely on a unique mode of receptor tyrosine kinase (RTK) regulation — which involves a protein ligand and a lipid (phosphatidylserine) complex that binds to the extracellular domain — to trigger dimerization and kinase activation.

  • MERTK initiates efferocytosis in macrophages and epithelial cells, which has a crucial role in the efficient clearance of apoptotic material.

  • MERTK and AXL function in innate immune cells to suppress inflammatory responses.

  • Genetic deletion of Mertk in mice leads to autoimmunity, and additional deletion of Axl and Tyro3 increases the autoimmune, inflammatory response.

  • TAM RTKs carry out their physiological innate immune functions within tumours and thereby promote an immunosuppressive tumour microenvironment.

  • TAM RTKs and their ligands are overexpressed in neoplastic cells. Autocrine and paracrine stimulation of aberrantly expressed TAM RTKs provide intrinsic survival signals and promote resistance to molecularly targeted and cytotoxic therapies.

  • AXL has normal roles in vasculogenesis and in the migration of cells during development; AXL expression correlates with metastasis, epithelial-to-mesenchymal transition and motility in tumours.

  • TAM RTKs represent a dual target in neoplastic disease given their intrinsic roles in tumour cell survival and chemoresistance, and their immunosuppressive roles in the tumour microenvironment.

Abstract

The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the TAM family receptors.
Figure 2: Ligand-mediated activation of the TAM receptors.
Figure 3: Mechanisms of immunosuppression mediated by TAM RTKs in innate immune cells.
Figure 4: Signalling by TAM family RTKs.

Similar content being viewed by others

References

  1. Graham, D. K., Dawson, T. L., Mullaney, D. L., Snodgrass, H. R. & Earp, H. S. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ. 5, 647–657 (1994). This paper describes the identification and sequencing of MERTK , as well as its expression in a range of cancer cell lines, including ectopic expression in lymphoblastic leukaemia.

    CAS  PubMed  Google Scholar 

  2. O'Bryan, J. P. et al. AXL, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell. Biol. 11, 5016–5031 (1991). This paper describes the identification and cloning of AXL from two independent samples from patients with CML, and transforming activity was shown in NIH3T3 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai, C., Gore, M. & Lemke, G. Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene 9, 2567–2578 (1994). This paper describes the identification, sequencing and transforming activity of TYRO3 in fibroblasts.

    CAS  PubMed  Google Scholar 

  4. Linger, R. M., Keating, A. K., Earp, H. S. & Graham, D. K. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer Res. 100, 35–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nature Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  Google Scholar 

  6. Ling, L. & Kung, H. J. Mitogenic signals and transforming potential of NYK, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol. Cell. Biol. 15, 6582–6592 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lapraz, F. et al. RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev. Biol. 300, 132–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991). This paper is the first to identify novel kinase domain sequences, including those of the TAMs, in RNA from the developing vertebrate nervous system using PCR.

    Article  CAS  PubMed  Google Scholar 

  9. Jia, R., Mayer, B. J., Hanafusa, T. & Hanafusa, H. A novel oncogene, v-RYK, encoding a truncated receptor tyrosine kinase is transduced into the RPL30 virus without loss of viral sequences. J. Virol. 66, 5975–5987 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Keating, A. K. et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the MER (MERTK) receptor tyrosine kinase. Oncogene 25, 6092–6100 (2006). This paper shows that Mertk -transgenic mice with ectopic MERTK expression in haematopoietic cells develop lymphoblastic leukaemia/lymphoma.

    Article  CAS  PubMed  Google Scholar 

  11. Guttridge, K. L. et al. MER receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation. J. Biol. Chem. 277, 24057–24066 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Goruppi, S., Ruaro, E., Varnum, B. & Schneider, C. GAS6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of RAS. Oncogene 18, 4224–4236 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Melaragno, M. G. et al. GAS6 inhibits apoptosis in vascular smooth muscle: role of AXL kinase and AKT. J. Mol. Cell Cardiol. 37, 881–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bellosta, P., Zhang, Q., Goff, S. P. & Basilico, C. Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulation. Oncogene 15, 2387–2397 (1997). In this study, AXL stimulation activated signalling through oncogenic pathways and promoted cell survival in response to apoptotic stimuli.

    Article  CAS  PubMed  Google Scholar 

  15. Varnum, B. C. et al. AXL receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373, 623–626 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Stitt, T. N. et al. The anticoagulation factor protein S and its relative, GAS6, are ligands for the TYRO3/AXL family of receptor tyrosine kinases. Cell 80, 661–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Nagata, K. et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for AXL, SKY, and MER receptor tyrosine kinases. J. Biol. Chem. 271, 30022–30027 (1996). References 15–17 identify GAS6 and PROS1 as TAM receptor ligands and suggest a role for TAM RTKs in conditions of cellular stress.

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki, T. et al. Structural basis for GAS6–AXL signalling. EMBO J. 25, 80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Tsou, W. I. et al. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 289, 25750–25763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lew, E. D. et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 3, e03385 (2014). References 19 and 20 are recent detailed studies showing differential binding, receptor activation and functions mediated by TAM RTK ligands.

    Article  CAS  PubMed Central  Google Scholar 

  21. Zagorska, A., Traves, P. G., Lew, E. D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nature Immunol. 15, 920–928 (2014).

    Article  CAS  Google Scholar 

  22. Caberoy, N. B., Zhou, Y. & Li, W. Tubby and tubby-like protein 1 are new MERTK ligands for phagocytosis. EMBO J. 29, 3898–3910 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caberoy, N. B., Alvarado, G. & Li, W. Tubby regulates microglial phagocytosis through MERTK. J. Neuroimmunol. 252, 40–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caberoy, N. B., Alvarado, G., Bigcas, J. L. & Li, W. Galectin-3 is a new MERTK-specific eat-me signal. J. Cell. Physiol. 227, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. et al. Mer receptor tyrosine kinase signaling participates in platelet function. Arterioscler Thromb. Vasc. Biol. 24, 1118–1123 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Angelillo-Scherrer, A. et al. Role of GAS6 in erythropoiesis and anemia in mice. J. Clin. Invest. 118, 583–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eken, C. et al. Ectosomes released by polymorphonuclear neutrophils induce a MERTK-dependent anti-inflammatory pathway in macrophages. J. Biol. Chem. 285, 39914–39921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharyya, S. et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14, 136–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cook, R. S. et al. MERTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J. Clin. Invest. 123, 3231–3242 (2013). In this study, Mertk−/− mice showed a pro-inflammatory state in the microenvironment of orthotopically implanted tumours, resulting in inhibition of tumour growth and metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014). This paper identifies TAM RTKs as key proteins targeted by CBLB in NK cells and implicates TAM RTK signalling in the suppression of NK cell activity, allowing enhanced metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different AXL/MERTK/TYRO3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Filardy, A. A. et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages. J. Immunol. 185, 2044–2050 (2010). This paper shows that MERTK-mediated efferocytosis polarizes macrophages towards an M2-phenotype.

    Article  CAS  PubMed  Google Scholar 

  36. D'Cruz, P. M. et al. Mutation of the receptor tyrosine kinase gene MERTK in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000). This paper maps genetic retinal dystrophy in a rat model to a deletion in the Mertk gene, resulting in failure to engulf apoptotic material shed nightly in the retina.

    Article  CAS  PubMed  Google Scholar 

  37. Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet. 26, 270–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Duncan, J. L. et al. An RCS-like retinal dystrophy phenotype in Mer-knockout mice. Invest. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    Article  PubMed  Google Scholar 

  39. Conlon, T. J. et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum. Gene Ther. Clin. Dev. 24, 23–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sandahl, M., Hunter, D. M., Strunk, K. E., Earp, H. S. & Cook, R. S. Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation. BMC Dev. Biol. 10, 122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao, W. H. et al. A protective role of MER receptor tyrosine kinase in nephrotoxic serum-induced nephritis. Clin. Immunol. 136, 236–244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, B. et al. Sertoli cell-initiated testicular innate immune response through Toll-like receptor-3 activation is negatively regulated by TYRO3, AXL, and MER receptors. Endocrinology 151, 2886–2897 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Ji, R. et al. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunol. 191, 6165–6177 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MERTK induction. J. Immunol. 189, 3508–3520 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Shao, W. H., Zhen, Y., Eisenberg, R. A. & Cohen, P. L. The MER receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses GAS6 as its ligand for uptake of apoptotic cells. Clin. Immunol. 133, 138–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee-Sherick, A. B. et al. Aberrant MER receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene 32, 5359–5368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahajan, N. P. & Earp, H. S. An SH2 domain-dependent, phosphotyrosine-independent interaction between VAV1 and the MER receptor tyrosine kinase: a mechanism for localizing guanine nucleotide-exchange factor action. J. Biol. Chem. 278, 42596–42603 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, Y. J. et al. Preventing cleavage of MER promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice. Toxicol. Appl. Pharmacol. 263, 61–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wan, E. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113, 1004–1012 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, MER, inhibits TNFα production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    CAS  PubMed  Google Scholar 

  52. Tibrewal, N. et al. Autophosphorylation docking site Tyr-867 in MER receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation. J. Biol. Chem. 283, 3618–3627 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Sen, P. et al. Apoptotic cells induce MER tyrosine kinase-dependent blockade of NF-κB activation in dendritic cells. Blood 109, 653–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wallet, M. A. et al. MERTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alciato, F., Sainaghi, P. P., Sola, D., Castello, L. & Avanzi, G. C. TNFα, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J. Leukoc. Biol. 87, 869–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Park, H. J., Baen, J. Y., Lee, Y. J., Choi, Y. H. & Kang, J. L. The TAM-family receptor MER mediates production of HGF through the RHOA-dependent pathway in response to apoptotic cells. Mol. Biol. Cell 23, 3254–3265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carrera Silva, E. A. et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39, 160–170 (2013). This paper shows that activated T cells induce PROS1 and externalize PtdSer, thereby stimulating TAM RTKs on APCs and reducing the immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-MER membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the TYRO3 family. Science 293, 306–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Rothlin, C. V., Leighton, J. A. & Ghosh, S. TYRO3, AXL, and MERTK receptor signaling in inflammatory bowel disease and colitis-associated cancer. Inflamm. Bowel Dis. 20, 1472–1480 (2014).

    Article  PubMed  Google Scholar 

  61. Zahuczky, G., Kristof, E., Majai, G. & Fesus, L. Differentiation and glucocorticoid regulated apopto-phagocytic gene expression patterns in human macrophages. Role of MERTK in enhanced phagocytosis. PLoS ONE 6, e21349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. A.- Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009). This paper shows that apoptotic cell ingestion produces lipid ligands for LXR through intracellular metabolism and that transcription is enhanced when LXR binds to the MERTK promoter.

    Article  CAS  Google Scholar 

  63. Kaller, M. et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol. Cell Proteomics 10, M111 010462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mudduluru, G. et al. Regulation of AXL receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 30, 2888–2899 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Mackiewicz, M. et al. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res. Treat. 130, 663–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giles, K. M. et al. AXL mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther. 12, 2541–2558 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Png, K. J., Halberg, N., Yoshida, M. & Tavazoie, S. F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2012).

    Article  CAS  Google Scholar 

  68. Wang, C. P. et al. Identification of a gene encoding a typical γ-carboxyglutamic acid domain in the tunicate Halocynthia roretzi. J. Thromb. Haemost. 1, 118–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Kulman, J. D. et al. Vitamin K-dependent proteins in Ciona intestinalis, a basal chordate lacking a blood coagulation cascade. Proc. Natl Acad. Sci. USA 103, 15794–15799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, J., Carey, K. & Godowski, P. J. Identification of GAS6 as a ligand for MER, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation. Oncogene 14, 2033–2039 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Burstyn-Cohen, T. et al. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 76, 1123–1132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Angelillo-Scherrer, A. et al. Deficiency or inhibition of GAS6 causes platelet dysfunction and protects mice against thrombosis. Nature Med. 7, 215–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Angelillo-Scherrer, A. et al. Role of GAS6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J. Clin. Invest. 115, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Linger, R. M. et al. MER receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia. Blood 122, 1599–1609 (2013). This paper shows that shRNA-mediated knockdown of MERTK in B-ALL cells abrogates MERTK-mediated survival signalling, decreases colony-forming potential, increases chemosensitivity and prolongs xenograft survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brandao, L. N. et al. Inhibition of MERTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia. Blood Cancer J. 3, e101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waizenegger, J. S. et al. Role of growth arrest-specific gene 6–MER axis in multiple myeloma. Leukemia http://dx.doi.org/10.1038/leu.2014.236 (2014).

  77. Neubauer, A. et al. Expression of AXL, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood 84, 1931–1941 (1994).

    CAS  PubMed  Google Scholar 

  78. Rochlitz, C. et al. AXL expression is associated with adverse prognosis and with expression of BCL-2 and CD34 in de novo acute myeloid leukemia (AML): results from a multicenter trial of the Swiss Group for Clinical Cancer Research (SAKK). Leukemia 13, 1352–1358 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Park, I. K. et al. Inhibition of the receptor tyrosine kinase AXL impedes activation of the FLT3 internal tandem duplication in human acute myeloid leukemia: implications for AXL as a potential therapeutic target. Blood 121, 2064–2073 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ben-Batalla, I. et al. AXL, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 122, 2443–2452 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Dirks, W. et al. Expression of the growth arrest-specific gene 6 (GAS6) in leukemia and lymphoma cell lines. Leuk. Res. 23, 643–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Ghosh, A. K. et al. The novel receptor tyrosine kinase AXL is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood 117, 1928–1937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crosier, P. S., Hall, L. R., Vitas, M. R., Lewis, P. M. & Crosier, K. E. Identification of a novel receptor tyrosine kinase expressed in acute myeloid leukemic blasts. Leuk. Lymphoma 18, 443–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. De Vos, J. et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 98, 771–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Nelson, E. R. et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094–1098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Y. et al. The c-MER gene is induced by Epstein–Barr virus immediate-early protein BRLF1. J. Virol. 78, 11778–11785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rankin, E. B. et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc. Natl Acad. Sci. USA 111, 13373–13378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hong, C. C. et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 268, 314–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Mudduluru, G. & Allgayer, H. The human receptor tyrosine kinase Axl gene — promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci. Rep. 28, 161–176 (2008).

    CAS  PubMed  Google Scholar 

  90. Liu, R. et al. Induction, regulation, and biologic function of AXL receptor tyrosine kinase in Kaposi sarcoma. Blood 116, 297–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kubo, T. et al. Resequencing and copy number analysis of the human tyrosine kinase gene family in poorly differentiated gastric cancer. Carcinogenesis 30, 1857–1864 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Margareto, J. et al. DNA copy number variation and gene expression analyses reveal the implication of specific oncogenes and genes in GBM. Cancer Invest. 27, 541–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Tworkoski, K. A. et al. MERTK controls melanoma cell migration and survival and differentially regulates cell behavior relative to AXL. Pigment Cell. Melanoma Res. 26, 527–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seo, J. S. et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22, 2109–2119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nguyen, K. Q. et al. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity. J. Biol. Chem. 289, 25737–25749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Linger, R. M. et al. MER or AXL receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32, 3420–3431 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shiozawa, Y., Pedersen, E. A. & Taichman, R. S. GAS6/MER axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche. Exp. Hematol. 38, 132–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Georgescu, M. M., Kirsch, K. H., Shishido, T., Zong, C. & Hanafusa, H. Biological effects of c-MER receptor tyrosine kinase in hematopoietic cells depend on the GRB2 binding site. Mol. Cell. Biol. 19, 1171–1181 (1999). In this study, a chimeric receptor containing the MERTK kinase domain is generated and is used to show MERTK-dependent signalling through the PI3K, ERK and NF-κB pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Darby, C., Giannola, D. M., Couzens, M. S. & Emerson, S. G. ETK2 receptor tyrosine kinase promotes survival of factor-dependent FDC-P1 progenitor cells. Exp. Hematol. 28, 716–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Fan, L. et al. Expression of MER on Jurkat cells and its anti-apoptosis effect. Ai Zheng 26, 698–702 (2007) (in Chinese).

    CAS  PubMed  Google Scholar 

  102. Rogers, A. E. et al. MER receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene 31, 4171–4181 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Schlegel, J. et al. MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J. Clin. Invest. 123, 2257–2267 (2013). This paper shows MERTK overexpression in melanoma, independent of RAS or BRAF mutation status, and that this correlates with progression to metastasis. It also shows that MERTK inhibition decreases colony formation, invasion and xenograft growth in melanoma models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, J. E., Krodel, M., Pazos, M., Lai, C. & Prieto, A. L. Cross-phosphorylation, signaling and proliferative functions of the TYRO3 and AXL receptors in Rat2 cells. PLoS ONE 7, e36800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Migdall-Wilson, J. et al. Prolonged exposure to a MER ligand in leukemia: GAS6 favors expression of a partial MER glycoform and reveals a novel role for MER in the nucleus. PLoS ONE 7, e31635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, W. P., Wen, Y., Varnum, B. & Hung, M. C. AKT is required for AXL–GAS6 signaling to protect cells from E1A-mediated apoptosis. Oncogene 21, 329–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Graham, D. K. et al. Ectopic expression of the proto-oncogene MER in pediatric T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 12, 2662–2669 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Li, Y. et al. AXL as a potential therapeutic target in cancer: role of AXL in tumor growth, metastasis and angiogenesis. Oncogene 28, 3442–3455 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Hector, A. et al. The AXL receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol. Ther. 10, 1009–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Holland, S. J. et al. R428, a selective small molecule inhibitor of AXL kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 70, 1544–1554 (2010). This paper shows that treatment with R428, a selective and orally bioavailable small-molecule AXL kinase inhibitor, reduces metastasis of breast cancer xenografts in mice.

    Article  CAS  PubMed  Google Scholar 

  111. Ye, X. et al. An anti-AXL monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29, 5254–5264 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Sensi, M. et al. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional AXL receptor kinase. J. Invest. Dermatol. 131, 2448–2457 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Song, X. et al. Overexpression of receptor tyrosine kinase AXL promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer 117, 734–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Christoph, S. et al. UNC569, a novel small-molecule mer inhibitor with efficacy against acute lymphoblastic leukemia in vitro and in vivo. Mol. Cancer Ther. 12, 2367–2377 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Leconet, W. et al. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene http://dx.doi.org/10.1038/onc.2013.487 (2013).

  116. Keating, A. K. et al. Inhibition of MER and AXL receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol. Cancer Ther. 9, 1298–1307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dunne, P. D. et al. AXL is a key regulator of inherent and chemotherapy-induced invasion and predicts a poor clinical outcome in early-stage colon cancer. Clin. Cancer Res. 20, 164–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Lay, J. D. et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res. 67, 3878–3887 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Tai, K. Y., Shieh, Y. S., Lee, C. S., Shiah, S. G. & Wu, C. W. AXL promotes cell invasion by inducing MMP-9 activity through activation of NF-κB and Brg-1. Oncogene 27, 4044–4055 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Paccez, J. D. et al. The receptor tyrosine kinase AXL is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 32, 689–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Asiedu, M. K. et al. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 33, 1316–1324 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, C. H. et al. Tumor-associated macrophages promote oral cancer progression through activation of the AXL signaling pathway. Ann. Surg. Oncol. 21, 1031–1037 (2014).

    Article  PubMed  Google Scholar 

  123. Papadakis, E. S. et al. AXL promotes cutaneous squamous cell carcinoma survival through negative regulation of pro-apoptotic BCL-2 family members. J. Invest. Dermatol. 131, 509–517 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Nur, E. K. A. et al. Requirement of activated CDC42-associated kinase for survival of v-RAS-transformed mammalian cells. Mol. Cancer Res. 3, 297–305 (2005).

    Article  Google Scholar 

  125. Melaragno, M. G., Fridell, Y. W. & Berk, B. C. The GAS6/AXL system: a novel regulator of vascular cell function. Trends Cardiovasc. Med. 9, 250–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Ruan, G. X. & Kazlauskas, A. AXL is essential for VEGF-A-dependent activation of PI3K/AKT. EMBO J. 31, 1692–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fraineau, S. et al. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a MER- and SHP2-dependent manner. Blood 120, 5073–5083 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Suleiman, L., Negrier, C. & Boukerche, H. Protein S: A multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit. Rev. Oncol. Hematol. 88, 637–654 (2013).

    Article  PubMed  Google Scholar 

  129. Burstyn-Cohen, T., Heeb, M. J. & Lemke, G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J. Clin. Invest. 119, 2942–2953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pierce, A. et al. AXL and TYRO3 modulate female reproduction by influencing gonadotropin-releasing hormone neuron survival and migration. Mol. Endocrinol. 22, 2481–2495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Salian-Mehta, S., Xu, M. & Wierman, M. E. AXL and MET crosstalk to promote gonadotropin releasing hormone (GnRH) neuronal cell migration and survival. Mol. Cell. Endocrinol. 374, 92–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, H. J., Jeng, Y. M., Chen, Y. L., Chung, L. & Yuan, R. H. GAS6/AXL pathway promotes tumor invasion through the transcriptional activation of Slug in hepatocellular carcinoma. Carcinogenesis 35, 769–775 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Allen, M. P. et al. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving GAS6/ARK signaling to p38 mitogen-activated protein kinase. Mol. Cell. Biol. 22, 599–613 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Allen, M. P. et al. Adhesion-related kinase repression of gonadotropin-releasing hormone gene expression requires RAC activation of the extracellular signal-regulated kinase pathway. J. Biol. Chem. 277, 38133–38140 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Kariolis, M. S. et al. An engineered AXL 'decoy receptor' effectively silences the GAS6–AXL signaling axis. Nature Chem. Biol. 10, 977–983 (2014).

    Article  CAS  Google Scholar 

  136. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol. 11, 889–896 (2010).

    Article  CAS  Google Scholar 

  137. Coussens, L. M., Zitvogel, L. & Palucka, A. K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rothlin, C. V. & Lemke, G. TAM receptor signaling and autoimmune disease. Curr. Opin. Immunol. 22, 740–746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Khan, T. N., Wong, E. B., Soni, C. & Rahman, Z. S. Prolonged apoptotic cell accumulation in germinal centers of MER-deficient mice causes elevated B cell and CD4+ TH cell responses leading to autoantibody production. J. Immunol. 190, 1433–1446 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Loges, S. et al. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen GAS6. Blood 115, 2264–2273 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Jacobsen, K. M. et al. Targeted inhibition of MER tyrosine kinase in the tumor microenvironment decreases tumor growth in a mouse model of breast cancer in Proc. 104th Annual Meeting of the American Association for Cancer Research (2013).

    Google Scholar 

  146. Stanford, J. C. et al. Efferocytosis produces a pro-metastatic landscape during post-partum mammary gland involution. J. Clin. Invest. http://dx.doi.org/10.1172/JCI76375 (2014).

  147. Zhao, Y. et al. Differential expression of AXL and correlation with invasion and multidrug resistance in cancer cells. Cancer Invest. 30, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Macleod, K. et al. Altered ERBB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res. 65, 6789–6800 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Zhu, S. et al. A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc. Natl Acad. Sci. USA 106, 17025–17030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang, Y. et al. MER receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene 32, 872–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Mahadevan, D. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26, 3909–3919 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Dufies, M. et al. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget 2, 874–885 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Gioia, R. et al. Quantitative phosphoproteomics revealed interplay between SYK and LYN in the resistance to nilotinib in chronic myeloid leukemia cells. Blood 118, 2211–2221 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Liu, L. et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 69, 6871–6878 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Meyer, A. S., Miller, M. A., Gertler, F. B. & Lauffenburger, D. A. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci. Signal. 6, ra66 (2013).

    PubMed  PubMed Central  Google Scholar 

  156. Ware, K. E. et al. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2–FGFR1 autocrine growth loop. Oncogenesis 2, e39 (2013). References 155 and 156 show that AXL is upregulated as a mechanism of acquired resistance to a variety of TKIs in breast and lung cancer cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, H. R. et al. Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4–ALK translocation. Mol. Oncol. 7, 1093–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang, F. et al. Differential mechanisms of acquired resistance to insulin-like growth factor 1 receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Res. 70, 7221–7231 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Brand, T. M. et al. AXL mediates resistance to cetuximab therapy. Cancer Res. 74, 5152–5164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genet. 44, 852–860 (2012). This paper shows that upregulation of GAS6–AXL autocrine signalling leads to EMT and that this is a mechanism to escape EGFR inhibition in NSCLC.

    Article  CAS  PubMed  Google Scholar 

  161. Khoury, H. J. et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 119, 3403–3412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang, Y. X. et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 68, 1905–1915 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Knubel, K. H. et al. MERTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget 5, 1338–1351 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rettew, A. N. et al. Multiple receptor tyrosine kinases promote the in vitro phenotype of metastatic human osteosarcoma cell lines. Oncogenesis 1, e34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, J. et al. Discovery of novel small molecule MER kinase inhibitors for the treatment of pediatric acute lymphoblastic leukemia. ACS Med. Chem. Lett. 3, 129–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu, J. et al. UNC1062, a new and potent MER inhibitor. Eur. J. Med. Chem. 65, 83–93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, W. et al. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J. Med. Chem. 57, 7031–7041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. DeRyckere, D. et al. Development of a novel small molecule MER tyrosine kinase inhibitor with therapeutic activity in cell culture and mouse models of acute lymphoblastic leukemia. in Proc. 104th Annual Meeting of the American Association for Cancer Research (2013).

    Google Scholar 

  169. Earp, H. S. et al. A small molecule MER tyrosine kinase inhibitor (UNC MERTKi) effectively inhibits growth of murine melanoma. in Proc. 104th Annual Meeting of the American Association for Cancer Research (2013).

    Google Scholar 

  170. Powell, N. A. et al. Novel and selective spiroindoline-based inhibitors of SKY kinase. Bioorg. Med. Chem. Lett. 22, 190–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Powell, N. A. et al. Optimization of highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of SKY kinase. Bioorg. Med. Chem. Lett. 23, 1051–1055 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Powell, N. A. et al. Highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of SKY kinase. Bioorg. Med. Chem. Lett. 23, 1046–1050 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Cummings, C. T. et al. Mer590, a novel monoclonal antibody targeting MER receptor tyrosine kinase, decreases colony formation and increases chemosensitivity in non-small cell lung cancer. Oncotarget 26 June 2014.

  174. Demarest, S. J. et al. Evaluation of TYRO3 expression, GAS6-mediated AKT phosphorylation, and the impact of anti-TYRO3 antibodies in melanoma cell lines. Biochemistry 52, 3102–3118 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Cerchia, L. et al. Targeting AXL with an high-affinity inhibitory aptamer. Mol. Ther. 20, 2291–2303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Avilla, E. et al. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res. 71, 1792–1804 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Sather, S. et al. A soluble form of the MER receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109, 1026–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Morizono, K. et al. The soluble serum protein GAS6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase AXL to mediate viral entry. Cell Host Microbe 9, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shimojima, M. et al. TYRO3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morizono, K. & Chen, I. S. The role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rahman, Z. S., Shao, W. H., Khan, T. N., Zhen, Y. & Cohen, P. L. Impaired apoptotic cell clearance in the germinal center by MER-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J. Immunol. 185, 5859–5868 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Williams, J. C., Wagner, N. J., Earp, H. S., Vilen, B. J. & Matsushima, G. K. Increased hematopoietic cells in the Mertk−/− mouse peritoneal cavity: a result of augmented migration. J. Immunol. 184, 6637–6648 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Weinger, J. G. et al. Loss of the receptor tyrosine kinase AXL leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J. Neuroinflamm. 8, 49 (2011).

    Article  Google Scholar 

  185. Subramanian, M. et al. An AXL/LRP1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bosurgi, L. et al. Paradoxical role of the proto-oncogene AXL and MER receptor tyrosine kinases in colon cancer. Proc. Natl Acad. Sci. USA 110, 13091–13096 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tang, H. et al. TAM receptors and the regulation of erythropoiesis in mice. Haematologica 94, 326–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lu, Q. et al. TYRO3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999). In this study, deletion of all three TAM RTKs is shown to result in a dramatic hyperinflammatory phenotype that is characterized by severe lymphoproliferation and results in broad spectrum autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  189. Li, Q., Lu, Q., Lu, H., Tian, S. & Lu, Q. Systemic autoimmunity in TAM triple knockout mice causes inflammatory brain damage and cell death. PLoS ONE 8, e64812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Qi, N. et al. Development of a spontaneous liver disease resembling autoimmune hepatitis in mice lacking TYRO3, AXL and MER receptor tyrosine kinases. PLoS ONE 8, e66604 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Caraux, A. et al. Natural killer cell differentiation driven by TYRO3 receptor tyrosine kinases. Nature Immunol. 7, 747–754 (2006).

    Article  CAS  Google Scholar 

  192. Wang, H. et al. The role of TYRO 3 subfamily receptors in the regulation of hemostasis and megakaryocytopoiesis. Haematologica 92, 643–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Binder, M. D. et al. GAS6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J. Neurosci. 28, 5195–5206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Binder, M. D. et al. GAS6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS ONE 6, e17727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fourcot, A. et al. GAS6 deficiency prevents liver inflammation, steatohepatitis, and fibrosis in mice. Am. J. Physiol-Gaster. L. 300, G1043–G1053 (2011).

    CAS  Google Scholar 

  196. Hagstrom, S. A., Duyao, M., North, M. A. & Li, T. Retinal degeneration in Tulp1−/− mice: vesicular accumulation in the interphotoreceptor matrix. Invest. Ophthalmol. Vis. Sci. 40, 2795–2802 (1999).

    CAS  PubMed  Google Scholar 

  197. Stubdal, H. et al. Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol. Cell. Biol. 20, 878–882 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sano, H. et al. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 112, 389–397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Abdel-Aziz, H. O. et al. Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: an oligonucleotide microarray study. J. Cancer Res. Clin. Oncol. 134, 777–788 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Holtzhausen for her contribution to figure 2 and for her critical reading of the manuscript; S. Sather for her analysis of mutations in TAM family kinases; and S. Frye for helpful conversations. This work was supported by grants from the US National Cancer Institute (NCI) (to D.K.G. and H.S.E.), from the UNC Breast Cancer SPORE (to H.S.E.) and from the Breast Cancer Research Foundation (to H.S.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shelton Earp.

Ethics declarations

Competing interests

D.K.G. and H.S.E. are co-founders of Meryx, Inc., a company developing small-molecule MERTK kinase inhibitors. D.D. holds stock in Meryx, Inc.

Supplementary information

PowerPoint slides

Glossary

M2-polarized macrophage

An alternatively activated macrophage that secretes immunosuppressive cytokines and growth factors to promote tissue repair.

Efferocytosis

The process by which macrophages and epithelial cells ingest apoptotic material.

Retinitis pigmentosa

An inflammatory process that occurs in the lining of the retina of the eye.

Involution

The process that occurs after lactation ceases, which results in substantial cell death in the milk-producing epithelium of the mammary gland.

Podocytes

Epithelial cells that wrap around the capillaries in the glomeruli of the kidney.

Sertoli cells

The cells in the male gonad that nourish the sperm-producing processes.

M1 macrophage

A macrophage that is activated by cytokines, or that is in contact with or has ingested foreign material, resulting in release of cytokines that initiate or prolong an inflammatory innate immune response.

Lipopolysaccharide

(LPS). A bacterial product that is sensed by specific Toll-like receptors on innate immune cells, which triggers a robust inflammatory response.

Chordates

Animals that have a notochord, a dorsal nerve chord and gill slits at one or more stages of development. This includes the vertebrates.

Non-oncogene addiction

Increased dependence of the neoplastic cell on the induction of endogenous cellular survival factors needed to prevent apoptosis in response to the hyperproliferative and altered metabolic states driven by oncogene expression or tumour suppressor loss.

Tingible body macrophages

Macrophages in the lymph node germinal centres that help to maintain tolerance to 'self' antigens.

Postpartum breast cancer

Breast cancer diagnosed in women after delivery of offspring. For reasons that have not been elucidated, the prognosis of postpartum breast cancer is worse than that of breast cancer diagnosed during pregnancy, even though both groups of women are premenopausal.

Aptamer

A synthesized RNA that is made or selected to bind to a specific target (usually a protein) with high affinity to modulate its function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, D., DeRyckere, D., Davies, K. et al. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 14, 769–785 (2014). https://doi.org/10.1038/nrc3847

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3847

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer