Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Turning ecology and evolution against cancer

Abstract

The fight against cancer has drawn researchers from a wide variety of disciplines, ranging from molecular biology to physics, but the perspective of an ecological theorist has been mostly overlooked. By thinking about the cells that make up a tumour as an endangered species, cancer vulnerabilities become more apparent. Studies in conservation biology and microbial experiments indicate that extinction is a complex phenomenon, which is often driven by the interaction of ecological and evolutionary processes. Recent advances in cancer research have shown that tumours, like species striving for survival, harbour intricate population dynamics, which suggests the possibility to exploit the ecology of tumours for treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competition and cooperation in cancer progression.
Figure 2: Spatial organization in populations.

Similar content being viewed by others

References

  1. Howlader, N. et al. SEER cancer statistics review, 1975–2008. National Cancer Institute, Bethesda MD (2011).

    Google Scholar 

  2. Frank, S. A. Dynamics of cancer: incidence, inheritance, and evolution. (Princeton Univ. Press, 2007).

    Book  Google Scholar 

  3. Nowak, M. A. Evolutionary dynamics: exploring the equations of life. (Harvard Univ. Press, 2006).

    Book  Google Scholar 

  4. Fisher, J. C. & Hollomon, J. H. A hypothesis for the origin of cancer foci. Cancer 4, 916–918 (1951).

    Article  CAS  PubMed  Google Scholar 

  5. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  7. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Hornsby, C., Page, K. M. & Tomlinson, I. P. What can we learn from the population incidence of cancer? Armitage and Doll revisited. Lancet Oncol. 8, 1030–1038 (2007).

    Article  PubMed  Google Scholar 

  11. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fröhling, S. et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 12, 501–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Attolini, C. S.-O. et al. A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc. Natl Acad. Sci. 107, 17604–17609 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. Datta, R., Gutteridge, A., Swanton, C., Maley, C. C. & Graham, T. A. Modelling the evolution of genetic instability during tumour progression. Evol. Appl. 6, 20–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Iwami, S., Haeno, H. & Michor, F. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi) genetic instability. PLoS Comput. Biol. 8, e1002370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michor, F. Chromosomal instability and human cancer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 631–635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michor, F., Iwasa, Y., Komarova, N. L. & Nowak, M. A. Local regulation of homeostasis favors chromosomal instability. Curr. Biol. 13, 581–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Iwasa, Y., Nowak, M. A. & Michor, F. Evolution of resistance during clonal expansion. Genetics 172, 2557–2566 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mumenthaler, S. M. et al. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol. Pharm. 8, 2069–2079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammer, S. M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N. Engl. J. Med. 337, 725–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ferguson, A. L. et al. Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity 38, 606–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  26. Crespi, B. & Summers, K. Evolutionary biology of cancer. Trends Ecol. Evol. 20, 545–552 (2005).

    Article  PubMed  Google Scholar 

  27. Basanta, D. & Anderson, A. R. Exploiting ecological principles to better understand cancer progression and treatment. Interface Focus 3, 20130020 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Basanta, D., Gatenby, R. A. & Anderson, A. R. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm. 9, 914–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Allee, W. C. Animal aggregations: a study in general sociology. (AMS Press, 1978).

    Google Scholar 

  33. Kramer, A. M., Dennis, B., Liebhold, A. M. & Drake, J. M. The evidence for Allee effects. Popul. Ecol. 51, 341–354 (2009).

    Article  Google Scholar 

  34. Weinberg, R. The biology of cancer. (Garland Science, 2013).

    Google Scholar 

  35. Greig, D. & Travisano, M. The Prisoner's Dilemma and polymorphism in yeast SUC genes. Proc Biol Sci. 271, S25–S26 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. 103, 13474–13479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Article  Google Scholar 

  39. Elias, S. & Banin, E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    CAS  PubMed  Google Scholar 

  42. Szczepariski, T., Orfão, A., van der Valden, V. H., San Miguel, J. F. & van Dongen, J. J. Minimal residual disease in leukaemia patients. Lancet Oncol. 2, 409–417 (2001).

    Article  Google Scholar 

  43. Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368 1610 (2013).

    Article  Google Scholar 

  44. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hekstra, D. R. & Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149, 1164–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Kiskowski, M. A. et al. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res. 71, 3459–3470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  48. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basanta, D. et al. Investigating prostate cancer tumour–stroma interactions: clinical and biological insights from an evolutionary game. Br. J. Cancer 106, 174–181 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dingli, D., Chalub, F., Santos, F. C., Van Segbroeck, S. & Pacheco, J. M. Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br. J. Cancer 101, 1130–1136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Powles, T. et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J. Clin. Oncol. 20, 3219–3224 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Diel, I. J. et al. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow—a long-term follow-up. Ann. Oncol. 19, 2007–2011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mundy, G. Preclinical models of bone metastases. Semin. Oncol. 28 (suppl. 11), 2–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Yoneda, T. et al. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88, 2979–2988 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ryder, M. et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE 8, e54302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kao, K. C. & Sherlock, G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nature Genet. 40, 1499–1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Lang, G. I., Botstein, D. & Desai, M. M. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188, 647–661 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Martens, E. A., Kostadinov, R., Maley, C. C. & Hallatschek, O. Spatial structure increases the waiting time for cancer. New J. Phys. 13, 115014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Clarke, B. Balanced polymorphism and the diversity of sympatric species. Taxon. Geogr. Syst. Assoc. Oxf. 4, 47–70 (1962).

    Google Scholar 

  68. Borghans, J. A., Beltman, J. B. & De Boer, R. J. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Le Gac, M., Plucain, J., Hindré, T., Lenski, R. E. & Schneider, D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. 109, 9487–9492 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poltak, S. R. & Cooper, V. S. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME J. 5, 369–378 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Thliveris, A. T. et al. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc. Natl Acad. Sci. 110, 11523–11528 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parsons, B. L. Many different tumor types have polyclonal tumor origin: evidence and implications. Mutat. Res. 659, 232–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Floor, S. L., Dumont, J. E., Maenhaut, C. & Raspe, E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol. Med. 18, 509–515 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Naumov, G. I., Naumova, E. S., Sancho, E. D. & Korhbla, M. P. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 135, 31–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. De Vargas Roditi, L., Boyle, K. E. & Xavier, J. B. Multilevel selection analysis of a microbial social trait. Mol. Syst. Biol. 9, 684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chao, H. X., Yurtsev, E., Datta, M., Artemova, T. & Gore, J. Bacterial cheating limits antibiotic resistance. Bull. Am. Phys. Soc. 57 (2012).

  78. Nagy, J. D., Victor, E. M. & Cropper, J. H. Why don't all whales have cancer? A novel hypothesis resolving Peto's paradox. Integr. Comp. Biol. 47, 317–328 (2007).

    Article  PubMed  Google Scholar 

  79. Sanchez, A. & Gore, J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 11, e1001547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hauert, C., Holmes, M. & Doebeli, M. Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc. R. Soc. B Biol. Sci. 273, 2565–2571 (2006).

    Article  Google Scholar 

  81. Hauert, C., Wakano, J. Y. & Doebeli, M. Ecological public goods games: cooperation and bifurcation. Theor. Popul. Biol. 73, 257–263 (2008).

    Article  PubMed  Google Scholar 

  82. Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494, 463–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R. & Mirny, L. A. Impact of deleterious passenger mutations on cancer progression. Proc. Natl Acad. Sci. 110, 2910–2915 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Beckman, R. A. & Loeb, L. A. Negative clonal selection in tumor evolution. Genetics 171, 2123–2131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grande-Pérez, A., Lázaro, E., Lowenstein, P., Domingo, E. & Manrubia, S. C. Suppression of viral infectivity through lethal defection. Proc. Natl Acad. Sci. USA 102, 4448–4452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lynch, M. Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. Mol. Biol. Evol. 13, 209–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Funchain, P. et al. The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154, 959–970 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gillespie, J. H. Population genetics: a concise guide. (JHU Press, 2010).

    Google Scholar 

  89. Gabriel, W., Lynch, M. & Burger, R. Muller's ratchet and mutational meltdowns. Evolution 47, 1744–1757 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Muller, H. J. Our load of mutations. Am. J. Hum. Genet. 2, 111 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jefferson, E. FDA approves Kyprolis for some patients with multiple myeloma. FDA [online], (2012).

    Google Scholar 

  93. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McConkey, D. J. & Zhu, K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 11, 164–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Jego, G., Hazoumé, A., Seigneuric, R. & Garrido, C. Targeting heat shock proteins in cancer. Cancer Lett. 332, 275–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Kramer, A. M. & Drake, J. M. Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol. 79, 633–639 (2010).

    Article  PubMed  Google Scholar 

  97. Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Dai, L., Korolev, K. S. & Gore, J. Slower recovery in space before collapse of connected populations. Nature 496, 355–358 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Pal, M., Pal, A. K., Ghosh, S. & Bose, I. Early signatures of regime shifts in gene expression dynamics. Phys. Biol. 10, 036010 (2013).

    Article  PubMed  Google Scholar 

  102. Connolly, J. L., Schnitt, S. J., Wang, H. H., Dvorak, A. M. & Dvorak, H. F. in Cancer Medicine. 6th Edn. Ch. 35. (eds Kufe, D. W. et al.) (Hamilton., BC Decker Inc. 2003).

    Google Scholar 

  103. Gatenby, R. A., Grove, O. & Gillies, R. J. Quantitative imaging in cancer evolution and ecology. Radiology 269, 8–14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lambert, G. et al. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nature Rev. Cancer 11, 375–382 (2011).

    Article  CAS  Google Scholar 

  108. Ben-Jacob, E., S. Coffey, D. & Levine, H. Bacterial survival strategies suggest rethinking cancer cooperativity. Trends Microbiol. 20 403–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, G. P., Kelehear, C. & Shine, R. The early toad gets the worm: cane toads at an invasion front benefit from higher prey availability. J. Anim. Ecol. 82 854–862 (2013).

    Article  PubMed  Google Scholar 

  110. Shilton, C. M., Brown, G. P., Benedict, S. & Shine, R. Spinal arthropathy associated with Ochrobactrum anthropi in free-ranging cane toads (Chaunus [Bufo] marinus) in Australia. Vet. Pathol. Online 45, 85–94 (2008).

    Article  CAS  Google Scholar 

  111. Van Ditmarsch, D. et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 4, 697–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nature Rev. Cancer 13, 883–892 (2013).

    Article  CAS  Google Scholar 

  113. Orlando, P. A., Gatenby, R. A. & Brown, J. S. Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy. Phys. Biol. 9, 065007 (2012).

    Article  PubMed  Google Scholar 

  114. Orlando, P. A., Gatenby, R. A. & Brown, J. S. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics. Front. Oncol. 3, 45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl Acad. Sci. 104, 19926–19930 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Korolev, K. S., Xavier, J. B., Nelson, D. R. & Foster, K. R. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies. Am. Nat. 178, 538 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Buttery, N. J. et al. Structured growth and genetic drift raise relatedness in the social amoeba Dictyostelium discoideum. Biol. Lett. 8, 794–797 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. González-García, I., Solé, R. V. & Costa, J. Metapopulation dynamics and spatial heterogeneity in cancer. Proc. Natl Acad. Sci. 99, 13085–13089 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Korolev, K. S. et al. Selective sweeps in growing microbial colonies. Phys. Biol. 9, 026008 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Korolev, K. S. The fate of cooperation during range expansions. PLoS Comput. Biol. 9, e1002994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Datta, M. S., Korolev, K. S., Cvijovic, I., Dudley, C. & Gore, J. Range expansion promotes cooperation in an experimental microbial metapopulation. Proc. Natl Acad. Sci. USA 110, 7354–7359 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Van Dyken, J. D., Müller, M. J., Mack, K. M. & Desai, M. M. Spatial population expansion promotes the evolution of cooperation in an experimental prisoner's dilemma. Curr. Biol. 23, 919–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  125. Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    Article  CAS  Google Scholar 

  126. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Hermsen, R., Deris, J. B. & Hwa, T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc. Natl. Acad. Sci. USA 109, 10775–10780 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Greulich, P., Waclaw, B. & Allen, R. J. Mutational pathway determines whether drug gradients accelerate evolution of drug-resistant cells. Phys. Rev. Lett. 109, 088101 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Gatenby, R. A. et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer 97, 646–653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carmona-Fontaine, C. et al. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc. Natl Acad. Sci. USA 110, 19402–19407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

    Article  Google Scholar 

  133. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Alcolea, M. P. & Jones, P. H. Tracking cells in their native habitat: lineage tracing in epithelial neoplasia. Nature Rev. Cancer 13, 161–171 (2013).

    Article  CAS  Google Scholar 

  137. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Humphries, A. et al. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc. Natl Acad. Sci. USA 110, E2490–E2499 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Momeni, B., Brileya, K. A., Fields, M. W., Shou, W. & Tautz, D. Strong inter-population cooperation leads to partner intermixing in microbial communities. ELife 2. e00230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Murray, J. D. Mathematical Biology. 2, (Springer, 2002).

    Book  Google Scholar 

  144. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.B.X. is supported by National Cancer Institute Grant CA148967 through the Integrative Cancer Biology Program and by the Office of the Director, US National Institutes of Health, under Award DP2OD008440.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirill S. Korolev, Joao B. Xavier or Jeff Gore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Allee effect

A commonly observed deviation from logistic growth, with the per-capita growth rate reaching a maximum at an intermediate population size. One often distinguishes between a strong Allee effect, when the growth rate is negative at small population sizes, and a weak Allee effect, when the growth rate at small population sizes is small but positive.

Auto-correlation time

The time that it takes deviations of a variable from its stable state to become statistically uncorrelated. This time is closely related to the recovery rate from perturbations.

Coefficient of variation

The ratio of the standard deviation to the mean. The coefficient of variation measures the relative strength of fluctuations.

Ecological dynamics

Describes interactions among species and the changes in their absolute abundances.

Evolutionary dynamics

The emergence of new genotypes and the changes in relative abundances of the existing genotypes, including possible extinctions.

Evolutionary game theory

Describes evolutionary dynamics in a polymorphic population consisting of organisms that use different strategies to succeed at a particular task and in which success depends on the strategies of other individuals, often conceptualized as a game. A typical example is a 'hawk–dove' game that describes a contest over mates. The success of an aggressive (hawk) strategy and a passive (dove) strategy depends on their relative abundance in the population and on how they fare in competition against other organisms with their own strategy and organisms with the opposite strategy.

Frequency-dependent selection

Selection that occurs when the fitnesses of species or genotypes depend on their relative abundances in the population. This type of selection can lead to stable coexistence between two species when species A is more fit than species B; when species A is rare and species B is more fit than species A; or when species B is rare.

Frequency-independent selection

Selection that occurs when the fitness of genotypes or species is independent of their relative abundance. In such situations, the genotype or species with the highest fitness takes over the population.

Genetic drift

The random changes in relative frequencies of different genotypes in a population. The primary cause of genetic drift is the stochastic variation in the number of offspring among organisms with the same fitness. Genetic drifts makes natural selection less efficient: it enables fixation of deleterious mutations, as well as the loss of beneficial mutations.

Logistic growth

A frequently used model of population growth, in which the net growth rate at population size N is rN(1 – N/K). At small population sizes, such populations grow exponentially at the per-capita growth rate r, whereas, at higher population sizes, the per-capita growth is diminished until it reaches zero at N = K. Here, K is the stationary population size, often termed the carrying capacity. Note that the per-capita growth rate is maximal at the smallest population sizes (N = 0).

Population dynamics

An umbrella term that describes both ecological and evolutionary dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, K., Xavier, J. & Gore, J. Turning ecology and evolution against cancer. Nat Rev Cancer 14, 371–380 (2014). https://doi.org/10.1038/nrc3712

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3712

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer