Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms

Key Points

  • Inflammation is causally related to cancer development, through processes that involve genotoxicity, aberrant tissue repair, proliferative responses, invasion and metastasis.

  • Major inflammatory pathways that are involved in inflammation-induced carcinogenesis converge at the level of the transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB).

  • Tumours modulate the inflammatory environment by the secretion of soluble growth factors and chemoattractants, which render inflammatory cells suppressive against anticancer T cell responses.

  • In around 20% of all cases, microbial organisms are the causative agents of cancer-inducing inflammation.

  • In addition to bona fide pathogens, pathobionts of the commensal microbiota have recently been recognized as being involved in inflammatory processes that promote tumour growth.

  • A better understanding of the role of the microbiota in inflammation-induced cancer might prospectively lead to targeted antimicrobial therapies against cancer initiation or progression.

Abstract

Inflammation is a fundamental innate immune response to perturbed tissue homeostasis. Chronic inflammatory processes affect all stages of tumour development as well as therapy. In this Review, we outline the principal cellular and molecular pathways that coordinate the tumour-promoting and tumour-antagonizing effects of inflammation and we discuss the crosstalk between cancer development and inflammatory processes. In addition, we discuss the recently suggested role of commensal microorganisms in inflammation-induced cancer and we propose that understanding this microbial influence will be crucial for targeted therapy in modern cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of inflammatory signalling on carcinogenesis.
Figure 2: Influence of cancer cells on inflammatory signalling.
Figure 3: Commensals and pathobionts as inducers of cancer development.
Figure 4: The multifaceted role of inflammasomes in cancer development.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Virchow, R. An address on the value of pathological experiments. Br. Med. J. 2, 198–203 (1881). This is the first account of inflammatory processes that accompany cancer development in tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). This paper shows a role for products derived from the commensal microbiota in tumour-induced inflammation and tumour promotion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic bacteroides fragilis-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA 108, 15354–15359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdulamir, A. S., Hafidh, R. R. & Abu Bakar, F. The association of streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012). This article shows the genotoxic and tumour-promoting potential of a pathobiont of the commensal microflora that blooms under inflammatory conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Mosesson, Y., Mills, G. B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nature Rev. Cancer 8, 835–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Rev. Cancer 12, 387–400 (2012).

    Article  CAS  Google Scholar 

  17. Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bronte-Tinkew, D. M. et al. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 69, 632–639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waldner, M. J., Foersch, S. & Neurath, M. F. Interleukin-6 — a key regulator of colorectal cancer development. Int. J. Biol. Sci. 8, 1248–1253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev. Cancer 9, 798–809 (2009).

    Article  CAS  Google Scholar 

  25. Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  30. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunol. 12, 715–723 (2011).

    Article  CAS  Google Scholar 

  31. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004). This paper and reference 31 first showed a connection between inflammation and cancer growth through the transcription factor NF-κB.

    Article  CAS  PubMed  Google Scholar 

  33. Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cataisson, C. et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J. Exp. Med. 209, 1689–1702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schiechl, G. et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11bhighGr1low macrophages. J. Clin. Invest. 121, 1692–1708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tye, H. et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22, 466–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunol. 12, 383–390 (2011).

    Article  CAS  Google Scholar 

  39. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang, R. et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 54, 900–909 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Park, O. et al. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology 54, 252–261 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Myant, K. B. et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12, 761–773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marotta, L. L. et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24 stem cell-like breast cancer cells in human tumors. J. Clin. Invest. 121, 2723–2735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ho, P. L., Lay, E. J., Jian, W., Parra, D. & Chan, K. S. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 72, 3135–3142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA 104, 16158–16163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scheitz, C. J., Lee, T. S., McDermitt, D. J. & Tumbar, T. Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J. 31, 4124–4139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  51. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Pribluda, A. et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24, 242–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Campregher, C., Luciani, M. G. & Gasche, C. Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells. Gut 57, 780–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Takai, A. et al. A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 28, 469–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Okazaki, I. M., Kotani, A. & Honjo, T. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Endo, Y. et al. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology 135, 889–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Komori, J. et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47, 888–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Schetter, A. J., Heegaard, N. H. & Harris, C. C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31, 37–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Singh, B., Vincent, L., Berry, J. A., Multani, A. S. & Lucci, A. Cyclooxygenase-2 expression induces genomic instability in MCF10A breast epithelial cells. J. Surg. Res. 140, 220–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hahn, M. A. et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 68, 10280–10289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mishra, A. et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell 22, 645–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sullivan, N. J. et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, Y. et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grivennikov, S. I. & Karin, M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 20, 65–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genet. 39, 467–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  81. Lerner, I. et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J. Clin. Invest. 121, 1709–1721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Grivennikov, S. I., Kuprash, D. V., Liu, Z. G. & Nedospasov, S. A. Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: From simple paradigms to complex mechanisms. Int. Rev. Cytol. 252, 129–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Rev. Cancer 9, 274–284 (2009).

    Article  CAS  Google Scholar 

  85. McDonald, B. et al. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int. J. Cancer 125, 1298–1305 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, J. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wolf, M. J. et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22, 91–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Med. 19, 747–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med. 9, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Geissmann, F. et al. TGF-β 1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 162, 4567–4575 (1999).

    CAS  PubMed  Google Scholar 

  94. Steinbrink, K. et al. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells. Blood 93, 1634–1642 (1999).

    CAS  PubMed  Google Scholar 

  95. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998).

    CAS  PubMed  Google Scholar 

  96. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  98. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Facciabene, A., Motz, G. T. & Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garrett, W. S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16, 208–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature Rev. Cancer 10, 878–889 (2010).

    Article  CAS  Google Scholar 

  105. Russell, W. An address on a characteristic organism of cancer. Br. Med. J. 2, 1356–1360 (1890).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wuerthele-Caspe, V. et al. Cultural properties and pathogenicity of certain microorganisms obtained from various proliferative and neoplastic diseases. Am. J. Med. Sci. 220, 638–646 (1950).

    Article  CAS  PubMed  Google Scholar 

  107. Livingston, V. W. & Alexander-Jackson, E. An experimental biologic approach to the treatment of neoplastic disease; determination of actinomycin in urine and cultures as an aid to diagnosis and prognosis. J. Am. Med. Womens Assoc. 20, 858–866 (1965).

    CAS  PubMed  Google Scholar 

  108. Unproven methods of cancer management. Livingston-Wheeler therapy. CA Cancer J. Clin. 41, A7–A12 (1991).

  109. Polk, D. B. & Peek, R. M. Jr. Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer 10, 403–414 (2010).

    Article  CAS  Google Scholar 

  110. Franco, A. T. et al. Activation of β-catenin by carcinogenic Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 10646–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Samaras, V., Rafailidis, P. I., Mourtzoukou, E. G., Peppas, G. & Falagas, M. E. Chronic bacterial and parasitic infections and cancer: a review. J. Infect. Dev. Ctries 4, 267–281 (2010).

    Article  PubMed  Google Scholar 

  112. Hill, M. J. Chronic bacterial infection and subsequent human carcinogenesis. Eur. J. Cancer Prev. 4, 127–128 (1995).

    CAS  PubMed  Google Scholar 

  113. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  114. Gordon, J. I. Honor thy gut symbionts redux. Science 336, 1251–1253 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nature Med. 16, 665–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4, e6026 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fukata, M. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869–1881 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Lowe, E. L. et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS ONE 5, e13027 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6, 4–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA 107, 21635–21640 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zaki, M. H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T. D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol. 185, 4912–4920 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186, 7187–7194 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108, 9601–9606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1307575110 (2013). This paper, together with reference 103, shows that the intestinal dysbiosis that results from innate immune deficiency leads to transmissible colon cancer.

  129. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS ONE 6, e20447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).

    Article  PubMed  Google Scholar 

  134. Kostic, A. D. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe. 14, 207–215 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rubinstein, M. R., et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe. 14, 195–206 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009). This paper shows the direct involvement of a member of the commensal microflora in inflammation and tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  137. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013). This report links microbiota-derived products to carcinogenesis and cellular senescence.

    Article  CAS  PubMed  Google Scholar 

  139. Yusuf, N. et al. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res. 68, 615–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nickoloff, B. J., Ben-Neriah, Y. & Pikarsky, E. Inflammation and cancer: is the link as simple as we think?. J. Invest Dermatol. 124, 10–14 (2005).

    Article  Google Scholar 

  142. Sanders, M. E. et al. An update on the use and investigation of probiotics in health and disease. Gut 62, 787–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Maroof, H., Hassan, Z. M., Mobarez, A. M. & Mohamadabadi, M. A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J. Clin. Immunol. 32, 1353–1359 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., De Simone, C. & Hontecillas, R. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS ONE 7, e34676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Corthesy, B., Gaskins, H. R. & Mercenier, A. Cross-talk between probiotic bacteria and the host immune system. J. Nutr. 137, 781S–790S (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Orlando, A., Messa, C., Linsalata, M., Cavallini, A. & Russo, F. Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol. Immunotoxicol 31, 108–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, Y. et al. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res. 31, 468–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Le Leu, R. K. et al. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen- damaged cells in rat colon. J. Nutr. 135, 996–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Pool-Zobel, B. L. et al. Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26, 365–380 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Elinav and Flavell laboratories for scientific suggestions and discussion. This work was supported by the Marie Curie Integration and Helmsley Charitable Foundation grants (to E.E.), by the Howard Hughes Medical Institute and a grant from the US Department of Defense 11-1-0745 (to R.A.F.) and a United States–Israel Binational Foundation grant (to E.E. and R.A.F.). C.A.T. receives a Boehinger Ingelheim Fonds Ph.D. Fellowship. R.N. is supported by a fellowship from the Jane Coffin Childs Memorial Fund, and C.J. was a recipient of a Trudeau Fellowship from Yale University, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eran Elinav or Richard A. Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Tumour microenvironment

Cellular and non-cellular components of the tissue that surrounds and influences tumour growth. Crucial components of the tumour microenvironment are immune cells, blood vessels, fibroblasts, extracellular matrix and other stromal cells.

Inflammasome

An intracellular multiprotein complex of the innate immune system, consisting of sensor proteins of the NOD-like receptor (NLR) family, adaptor proteins and the pro-inflammatory serine protease caspase 1. The function of the inflammasome is to cleave the cytokines pro-interleukin-1β and pro-interleukin-18 into their biologically active forms.

Senescence-associated secretory phenotype

(SASP). A common profile of secreted factors, induced during cellular senescence. These factors include pro-inflammatory cytokines, such as interleukin-1 and interleukin-6, and chemoattractants, such as CXC-chemokine ligand 8.

Genotoxic island

A genomic island in bacteria that encodes proteins with potentially genotoxic — that is, genome-damaging — properties.

Probiotic

Pertaining to microbial species that are introduced into the intestinal microbial ecosystem to exert beneficial effects on the host.

Prebiotics

Interventions (not live microorganisms) that function to stabilize a particular microbial community with a beneficial effect.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elinav, E., Nowarski, R., Thaiss, C. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13, 759–771 (2013). https://doi.org/10.1038/nrc3611

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3611

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer