Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Life history trade-offs in cancer evolution

Abstract

Somatic evolution during cancer progression and therapy results in tumour cells that show a wide range of phenotypes, which include rapid proliferation and quiescence. Evolutionary life history theory may help us to understand the diversity of these phenotypes. Fast life history organisms reproduce rapidly, whereas those with slow life histories show less fecundity and invest more resources in survival. Life history theory also provides an evolutionary framework for phenotypic plasticity, which has potential implications for understanding 'cancer stem cells'. Life history theory suggests that different therapy dosing schedules might select for fast or slow life history cell phenotypes, with important clinical consequences.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hallmarks of cancer that are associated with life history selection.
Figure 2: Tumour heterogeneity.
Figure 3: Resource limitation and escape during progression.
Figure 4: Trade-offs between proliferation and survival during cancer progression.
Figure 5: Effects of treatment on life history strategies.

References

  1. Stearns, S. C. The evolution of life histories (Oxford Univ. Press, 1992).

    Google Scholar 

  2. Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Article  Google Scholar 

  3. Williams, G. C. Natural selection, the cost or reproduction and a refinement of Lack's principle. Am. Nat. 100, 687–690 (1966).

    Article  Google Scholar 

  4. Creighton, J. C., Heflin, N. D. & Belk, M. C. Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. 174, 673–684 (2009).

    Article  PubMed  Google Scholar 

  5. Fabian, D. & Flatt, T. Life history evolution. Nature Education Knowledge 3, 24 (2012).

    Google Scholar 

  6. Partridge, L. & Prowse, N. The effects of reproduction on longevity and fertility in male Drosophila melanogaster. J. Insect Physiol. 43, 501–512 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Zakrzewska, A. et al. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol. Biol. Cell 22, 4435–4446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broxterman, H. J. et al. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 2, 2278–2282 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  11. Jerby, L. et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 72, 5712–5720 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  13. Leroi, A. M. et al. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech. Ageing Dev. 126, 421–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Campisi, J. Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp. Gerontol. 38, 5–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ungewitter, E. & Scrable, H. Antagonistic pleiotropy and p53. Mech. Ageing Dev. 130, 10–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Jeschke, J. M. & Kokko, H. The roles of body size and phylogeny in fast and slow life histories. Evol. Ecol. 23, 867–878 (2009).

    Article  Google Scholar 

  17. MacArthur, R. & Wilson, E. O. The theory of island biography (Princeton Univ. Press, 1967).

    Google Scholar 

  18. Malthus, T. R. An Essay on the Principle of Population (Johnson, 1798).

    Google Scholar 

  19. Aktipis, C. A., Maley, C. C. & Pepper, J. W. Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prev. Res. (Phila) 5, 266–275 (2012).

    Article  Google Scholar 

  20. Chen, J., Sprouffske, K., Huang, Q. & Maley, C. C. Solving the puzzle of metastasis: the evolution of cell migration in neoplasms. PLoS ONE 6, e17933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reznick, D. & Bryant, M. J. & Bashey, F. r- and K-selection revisited: The role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).

    Article  Google Scholar 

  22. Skutch, A. F. Life history of Longuemare's hermit hummingbird. Int. J. Avain Sci. 93, 180–195 (1951).

    Google Scholar 

  23. Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Ann. Rev. Ecol. Systemat. 13, 201–228 (1982).

    Article  Google Scholar 

  24. Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation in mammals. J. Zool. 220, 417–437 (1990).

    Article  Google Scholar 

  25. Ebenman, B. Competition between age classes and population dynamics. J. Theor. Biol. 131, 389–400 (1988).

    Article  Google Scholar 

  26. Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899–912 (1999).

    Article  Google Scholar 

  27. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Gerlinger, M. & Swanton, C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer 103, 1139–1143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Rev. Cancer 12, 487–493 (2012).

    Article  CAS  Google Scholar 

  31. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  33. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. van Diest, P. J., van der Wall, E. & Baak, J. P. Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57, 675–681 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Orlando, P. A., Gatenby, R. A. & Brown, J. S. Tumor evolution in space: The effects of competition colonization tradeoffs on tumor invasion dynamics. Front. Oncol. http://dx.doi.org/10.3389/fonc.2013.00045 (2013).

  37. Alfarouk, K. O., Ibrahim, M. E., Gatenby, R. A. & Brown, J. S. Riparian ecosystems in human cancers. Evol. Appl. 6, 46–53 (2013).

    Article  PubMed  Google Scholar 

  38. Brurberg, K. G., Skogmo, H. K., Graff, B. A., Olsen, D. R. & Rofstad, E. K. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy. Radiother. Oncol. 77, 220–226 (2005).

    Article  PubMed  Google Scholar 

  39. Cardenas-Navia, L. I. et al. The pervasive presence of fluctuating oxygenation in tumors. Cancer Res. 68, 5812–5819 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Limberger, R. & Wickham, S. A. Competition-colonization trade-offs in a ciliate model community. Oecologia 167, 723–732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Turchin, P. Does population ecology have general laws? OIKOS 94, 17–26 (2001).

    Article  Google Scholar 

  42. Graham, T. A. et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology 140, 1241–1250 e1-9 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA 103, 714–719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, W. et al. UVB-induced apoptosis drives clonal expansion during skin tumor development. Carcinogenesis 26, 249–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. Kenific, C. M., Thorburn, A. & Debnath, J. Autophagy and metastasis: another double-edged sword. Curr. Opin. Cell Biol. 22, 241–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

    Article  CAS  Google Scholar 

  48. Etzioni, R. et al. The case for early detection. Nature Rev. Cancer 3, 243–252 (2003).

    Article  CAS  Google Scholar 

  49. Seliger, B. Strategies of tumor immune evasion. BioDrugs 19, 347–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Debarre, F. & Gandon, S. Evolution in heterogeneous environments: between soft and hard selection. Am. Nat. 177, E84–E97 (2011).

    Article  PubMed  Google Scholar 

  53. Wilting, R. H. & Dannenberg, J. H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Updat. 15, 21–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Clevers, H. The cancer stem cell: premises, promises and challenges. Nature Med. 17, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Holzel, M., Bovier, A. & Tuting, T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nature Rev. Cancer 13, 365–376 (2013).

    Article  CAS  Google Scholar 

  57. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilson, A. et al. Dormant and self-renewing hematopoietic stem cells and their niches. Ann. NY Acad. Sci. 1106, 64–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Biddle, A. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71, 5317–5326 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Kusumbe, A. P. & Bapat, S. A. Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res. 69, 9245–9253 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Godlewski, J. et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37, 620–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

    Google Scholar 

  64. Houston, A. I. & McNamara, J. M. Phenotypic plasticity as a state-dependent life-history decision. Evol. Ecol. 6, 243–253 (1992).

    Article  Google Scholar 

  65. Gurney, W. S. C. & Middleton, D. A. J. Optimal resource allocation in a randomly varying environment. Funct. Ecol. 10, 602–612 (1996).

    Article  Google Scholar 

  66. Ball, S. L. & Baker, R. L. Predator induced life history changes: Antipredator behavior costs or facultative life history shifts? Ecology 77, 1116–1124 (1996).

    Article  Google Scholar 

  67. Reznick, D., Butler, M. J. & Rodd, H. Life history evolution in guppies. VII. The comparative ecology of high and low predation environments. Am. Nat. 157, 12–26 (2001).

    Article  Google Scholar 

  68. Chivers, D. P., Kiesecker, J. M., Marco, A., Wildy, E. L. & Blaustein, A. R. Shifts in life history as a repsonse to predation in western toads (Bufo boreas). J. Chem. Ecol. 25, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  69. Buhse, H. E. Jr & Williams, N. E. A comparison of cortical proteins in Tetrahymena vorax microstomes and macrostomes. J. Protozool. 29, 222–226 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Ryals, P. E., Smith-Somerville, H. E. & Buhse, H. E. Jr. Phenotype switching in polymorphic Tetrahymena: a single-cell Jekyll and Hyde. Int. Rev. Cytol. 212, 209–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Foret, S. et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104 (2005).

    Article  PubMed  Google Scholar 

  73. Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nature Rev. Genet. 9, 735–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Taussig, D. C. et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34 fraction. Blood 115, 1976–1984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schlichting, C. D. Origins of differentiation via phenotypic plasticity. Evol. Dev. 5, 98–105 (2003).

    Article  PubMed  Google Scholar 

  79. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J. & Ostrand-Rosenberg, S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J. Immunol. 176, 284–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Bunt, S. K. et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67, 10019–10026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer 9, 239–252 (2009).

    Article  CAS  Google Scholar 

  84. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Sprouffske, K. et al. An evolutionary explanation for the presence of cancer nonstem cells in neoplasms. Evol. Appl. 6, 92–101 (2013).

    Article  PubMed  Google Scholar 

  86. Kirkwood, T. B. Evolution of ageing. Mech. Ageing Dev. 123, 737–745 (2002).

    Article  PubMed  Google Scholar 

  87. Borst, P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2, 120066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    Article  CAS  Google Scholar 

  89. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  Google Scholar 

  90. Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Wargo, A. R., Huijben, S., de Roode, J. C., Shepherd, J. & Read, A. F. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl Acad. Sci. USA 104, 19914–19919 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Contractor, K. B. & Aboagye, E. O. Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J. Nucl. Med. 50 (Suppl. 1), 97–105 (2009).

    Article  CAS  Google Scholar 

  94. Coffey, J. C. et al. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 4, 760–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robey, I. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pasquier, E., Kavallaris, M. & Andre, N. Metronomic chemotherapy: new rationale for new directions. Nature Rev. Clin. Oncol. 7, 455–465 (2010).

    Article  Google Scholar 

  98. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nature Rev. Cancer 7, 834–846 (2007).

    Article  CAS  Google Scholar 

  100. Radich, J. P. & Wood, B. L. in Leukemia and Related Disorders (eds Estey, E. H. & Appelbaum, F. R.) 251–271 (Springer, 2012).

    Book  Google Scholar 

  101. Lu, Z. et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917–3929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Rothwell, P. M. et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377, 31–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Corley, D. A., Kerlikowske, K., Verma, R. & Buffler, P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 124, 47–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Vaughan, T. L. et al. Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett's oesophagus: a prospective study. Lancet Oncol. 6, 945–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kostadinov, R. L. et al. NSAIDs Modulate Clonal Evolution in Barrett's Esophagus. PLoS Genet. 9, e1003553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Parry, G. D. The meaning of r- and K-selection. Oecol. (Berlin) 48, 260–264 (1981).

    Article  Google Scholar 

  108. Mueller, L. D. Density-dependent population growth and natural selection in food-limited environments: The Drosophila model. Am. Nat. 132, 786–809 (1988).

    Article  Google Scholar 

  109. Levins, R. Evolution in Changing Environments (Princeton Univ. Press, 1968).

    Google Scholar 

  110. Gatenby, R. A., Grove, O. & Gillies, R. J. Quantitative imaging in cancer evolution and ecology. Radiology 269, 8–14 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Nedelcu, A. Caulin and A. J. Figuredo for thoughtful and thought-provoking discussions during the development of these ideas. This work was supported in part by Research Scholar Grant number 117209-RSG-09-163-01-CNE from the American Cancer Society, by US National Institutes of Health (NIH) grants F32 CA144331, R01 CA149566, R01 CA170595, R01 CA140657 and U54 CA143970, and by a grant from the McDonnell Foundation 220020270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Athena Aktipis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aktipis, C., Boddy, A., Gatenby, R. et al. Life history trade-offs in cancer evolution. Nat Rev Cancer 13, 883–892 (2013). https://doi.org/10.1038/nrc3606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3606

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer