Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unravelling cancer stem cell potential

Abstract

The maintenance and repair of many adult tissues are ensured by stem cells (SCs), which reside at the top of the cellular hierarchy of these tissues. Functional assays, such as in vitro clonogenic assays, transplantation and in vivo lineage tracing, have been used to assess the renewing and differentiation potential of normal SCs. Similar strategies have suggested that solid tumours may also be hierarchically organized and contain cancer SCs (CSCs) that sustain tumour growth and relapse after therapy. In this Opinion article, we discuss the different parallels that can be drawn between adult SCs and CSCs in solid tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchy in normal tissues and tumours.
Figure 2: The different models of tumour growth.
Figure 3: The TPC assay.
Figure 4: Clonal analysis to assess the mode of tumour growth.
Figure 5: Implication of CSCs in cancer therapies and tumour relapse.

Similar content being viewed by others

References

  1. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leblond, C. P., Clermont, Y. & Nadler, N. J. The pattern of stem cell renewal in three epithelia. (esophagus, intestine and testis). Proc. Can. Cancer Conf. 7, 3–30 (1967).

    CAS  PubMed  Google Scholar 

  3. Till, J. E. & McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Gallico, G. G. 3rd, O'Connor, N. E., Compton, C. C., Kehinde, O. & Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 311, 448–451 (1984).

    Article  PubMed  Google Scholar 

  5. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Van Keymeulen, A. & Blanpain, C. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol. 197, 575–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pierce, G. B. & Dixon, F. J. Jr. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12, 573–583 (1959).

    Article  CAS  PubMed  Google Scholar 

  8. Pierce, G. B. Jr, Dixon, F. J. Jr & Verney, E. L. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest. 9, 583–602 (1960).

    PubMed  Google Scholar 

  9. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi, K., Rochat, A. & Barrandon, Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc. Natl Acad. Sci. USA 90, 7391–7395 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech. 22, 411–417 (2004).

    Article  CAS  Google Scholar 

  16. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418.

  23. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nature Med. 17, 1225–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrett, L. E. et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21, 11–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Schroeder, T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6, 203–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Purton, L. E. & Scadden, D. T. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1, 263–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA 105, 13427–13432 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Curley, M. D. et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27, 2875–2883 (2009).

    CAS  PubMed  Google Scholar 

  43. Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer 12, 767–775 (2012).

    Article  CAS  Google Scholar 

  44. Ishizawa, K. et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7, 279–282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo, Y. et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30, 2100–2113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Civenni, G. et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 71, 3098–3109 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Lapouge, G. et al. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO J. 31, 4563–4575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Clappier, E. et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med. 208, 653–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nature Biotech. 29, 1120–1127 (2011).

    Article  CAS  Google Scholar 

  56. Schober, M. & Fuchs, E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci. USA 108, 10544–10549 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Curtis, S. J. et al. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7, 127–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blanpain, C. Tracing the cellular origin of cancer. Nature Cell Biol. 15, 126–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093.

  65. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Merlos-Suarez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Kemper, K. et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378–2386 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Gerbe, F., Brulin, B., Makrini, L., Legraverend, C. & Jay, P. DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology 137, 2179–2181 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Nakanishi, Y. et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nature Genet. 45, 98–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602–606 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Grosse-Gehling, P. et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol. 229, 355–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Youssef, K. K. et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nature Cell Biol. 14, 1282–1294 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, S. H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β3-catenin signaling. Nature Genet. 40, 1130–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Spike, B. T. et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 10, 183–197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol. 14, 1131–1138 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548–557 (2004).

    Article  PubMed  Google Scholar 

  94. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Quintana, E. et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10, R25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Li, Y. M. et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6, 459–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    CAS  PubMed  Google Scholar 

  104. Kim, M. et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res. 70, 10411–10421 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Ramsey, D. M. & McAlpine, S. R. Halting metastasis through CXCR4 inhibition. Bioorg. Med. Chem. Lett. 23, 20–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Pang, R. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6, 603–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  111. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Beck, B. et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    CAS  PubMed  Google Scholar 

  118. Hamerlik, P. et al. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med. 209, 507–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lanahan, A. et al. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25, 156–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Chow, D. C., Wenning, L. A., Miller, W. M. & Papoutsakis, E. T. Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys. J. 81, 675–684 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, Y., Liu, Y., Malek, S. N., Zheng, P. & Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8, 399–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, H., Li, H., Xi, H. S. & Li, S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119, 2595–2607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bar, E. E., Lin, A., Mahairaki, V., Matsui, W. & Eberhart, C. G. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol. 177, 1491–1502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hashimoto, O. et al. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1α-dependent manner in pancreatic cancer cells. Pathobiology 78, 181–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Soeda, A. et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene 28, 3949–3959 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Schwab, L. P. et al. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res. 14, R6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Harrison, H. et al. Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status. Cancer Res. 73, 1420–1433 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Kuschel, A., Simon, P. & Tug, S. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J. Cell. Physiol. 227, 514–524 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  Google Scholar 

  135. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    Article  CAS  Google Scholar 

  136. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biol. 12, 572–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Dylla, S. J. et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3, e2428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. de The, H. & Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nature Rev. Cancer 10, 775–783 (2010).

    Article  CAS  Google Scholar 

  144. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Sachlos, E. et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149, 1284–1297 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nature Biotech. 29, 928–933 (2011).

    Article  CAS  Google Scholar 

  149. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Fernandes, K. J. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biol. 6, 1082–1093 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Hollier, B. G. et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res. 73, 1981–1992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morel, A. P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3, e2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, Z. et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 69, 2400–2407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fan, F. et al. Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 1, 5–16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, Z. F. & Behringer, R. R. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA 107, 15449–15454 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ansieau, S. et al. Induction of EMT by Twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nature Cell Biol. 12, 982–992 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Dhawan, S., Tschen, S. I. & Bhushan, A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation. Genes Dev. 23, 906–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shimono, Y. et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for the works not cited in the text owing to space restriction. B.B. is a chargé de recherche of the Fonds de la Recherche Scientifique (FNRS). C.B. is an investigator of Walloon Excellence in Lifesciences and Biotechnology. C.B. is supported by the FNRS, the Interuniversity Attraction Poles programme, the ARC programme (Action de Recherche Concertée), a research grant from the Fondation Contre le Cancer, the Université Libre de Bruxelles fondation, the fond Gaston Ithier, and a starting grant from the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Blanpain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, B., Blanpain, C. Unravelling cancer stem cell potential. Nat Rev Cancer 13, 727–738 (2013). https://doi.org/10.1038/nrc3597

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3597

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer