Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The DREAM complex: master coordinator of cell cycle-dependent gene expression

A Corrigendum to this article was published on 23 August 2013

This article has been updated

Abstract

The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential cell cycle control by RB and the DREAM complex.
Figure 2: Common themes of repression connect the Muv genes and their homologues.
Figure 3: Tipping the balance from quiescence to proliferation in cancer.

Similar content being viewed by others

Change history

  • 23 August 2013

    On page 593 of this Opinion article, a citation to a key reference (Flowers. S., Beck, G. R. Jr & Moran, E. Tissue-specific gene targeting by the multiprotein mammalian DREAM complex. J. Biol. Chem. 286, 27867–27871 (2011)) was not included. This reference should have been cited at the end of the following sentence: "Perhaps isolation of the DREAM and the BMYB–MuvB complexes from distinct mammalian tissues will reveal functions in addition to cell cycle control130,131". This has now been corrected online.

References

  1. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferguson, E. L., Sternberg, P. W. & Horvitz, H. R. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 326, 259–267 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Aroian, R. V., Koga, M., Mendel, J. E., Ohshima, Y. & Sternberg, P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693–699 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Beitel, G. J., Clark, S. G. & Horvitz, H. R. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348, 503–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Han, M. & Sternberg, P. W. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63, 921–931 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson, E. L. & Horvitz, H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123, 109–121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison, M. M., Lu, X. & Horvitz, H. R. LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with the DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics 176, 255–271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol. Cell 7, 461–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Fay, D. S. & Han, M. The synthetic multivulval genes of C. elegans: functional redundancy, Ras-antagonism, and cell fate determination. Genesis 26, 279–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Beitel, G. J., Lambie, E. J. & Horvitz, H. R. The C. elegans gene lin-9, which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein. Gene 254, 253–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, J. H., Ceol, C. J., Schwartz, H. T. & Horvitz, H. R. New genes that interact with lin-35 Rb to negatively regulate the let-60 ras pathway in Caenorhabditis elegans. Genetics 164, 135–151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Ceol, C. J. & Horvitz, H. R. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev. Cell 6, 563–576 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Calvi, B. R. & Spradling, A. C. Chorion gene amplification in Drosophila: a model for metazoan origins of DNA replication and S-phase control. Methods 18, 407–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, P. W. et al. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beall, E. L., Bell, M., Georlette, D. & Botchan, M. R. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev. 18, 1667–1680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korenjak, M. et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dimova, D. K., Stevaux, O., Frolov, M. V. & Dyson, N. J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev. 17, 2308–2320 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor-Harding, B., Binne, U. K., Korenjak, M., Brehm, A. & Dyson, N. J. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol. Cell. Biol. 24, 9124–9136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrison, M. M., Ceol, C. J., Lu, X. & Horvitz, H. R. Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc. Natl Acad. Sci. USA 103, 16782–16787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davidson, C. J., Guthrie, E. E. & Lipsick, J. S. Duplication and maintenance of the Myb genes of vertebrate animals. Biol. Open 2, 101–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Gagrica, S. et al. Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated protein. EMBO J. 23, 4627–4638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandoval, R. et al. A mutant allele of BARA/LIN-9 rescues the cdk4−/− phenotype by releasing the repression on E2F-regulated genes. Exp. Cell Res. 312, 2465–2475 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell 26, 539–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Schmit, F. et al. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6, 1903–1913 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Pilkinton, M., Sandoval, R. & Colamonici, O. R. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 26, 7535–7543 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Joaquin, M., Bessa, M., Saville, M. K. & Watson, R. J. B-Myb overcomes a p107-mediated cell proliferation block by interacting with an N-terminal domain of p107. Oncogene 21, 7923–7932 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Litovchick, L., Florens, L. A., Swanson, S. K., Washburn, M. P. & DeCaprio, J. A. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev. 25, 801–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tedesco, D., Lukas, J. & Reed, S. I. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 16, 2946–2957 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georlette, D. et al. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 21, 2880–2896 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hurford, R. K. Jr., Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Reichert, N. et al. Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol. Cell. Biol. 30, 2896–2908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6, 729–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, W., Giangrande, P. H. & Nevins, J. R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muller, G. A. & Engeland, K. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J. 277, 877–893 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Muller, G. A. et al. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res. 40, 1561–1578 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Schmit, F., Cremer, S. & Gaubatz, S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J. 276, 5703–5716 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Catchpole, S., Tavner, F., Le Cam, L., Sardet, C. & Watson, R. J. A. B-myb promoter corepressor site facilitates in vivo occupation of the adjacent E2F site by p107 x E2F and p130 x E2F complexes. J. Biol. Chem. 277, 39015–39024 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Nakajima, Y., Yamada, S., Kamata, N. & Ikeda, M. A. Interaction of E2F-Rb family members with corepressors binding to the adjacent E2F site. Biochem. Biophys. Res. Commun. 364, 1050–1055 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Aranda, S., Laguna, A. & de la Luna, S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J. 25, 449–462 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tschop, K. et al. A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev. 25, 814–830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(β-TRCP). Genes Dev. 24, 72–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, K., Degerny, C., Xu, M. & Yang, X. J. YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem. Cell Biol. 87, 77–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nature Rev. Cancer 13, 246–257 (2013).

    Article  CAS  Google Scholar 

  48. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496–5509 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Sandoval, R., Pilkinton, M. & Colamonici, O. R. Deletion of the p107/p130-binding domain of Mip130/LIN-9 bypasses the requirement for CDK4 activity for the dissociation of Mip130/LIN-9 from p107/p130-E2F4 complex. Exp. Cell Res. 315, 2914–2920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nor Rashid, N., Yusof, R. & Watson, R. J. Disruption of repressive p130-DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for cell-cycle progression in cervical cancer cells. J. Gen. Virol. 92, 2620–2627 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sadasivam, S., Duan, S. & DeCaprio, J. A. The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev. 26, 474–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010).

    Article  CAS  Google Scholar 

  57. Kosar, M. et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a. Cell Cycle 10, 457–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Knight, A. S., Notaridou, M. & Watson, R. J. A. Lin-9 complex is recruited by B-Myb to activate transcription of G2/M genes in undifferentiated embryonal carcinoma cells. Oncogene 28, 1737–1747 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Lam, E. W., Robinson, C. & Watson, R. J. Characterization and cell cycle-regulated expression of mouse B-myb. Oncogene 7, 1885–1890 (1992).

    CAS  PubMed  Google Scholar 

  60. Pilkinton, M., Sandoval, R., Song, J., Ness, S. A. & Colamonici, O. R. Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J. Biol. Chem. 282, 168–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Sala, A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur. J. Cancer 41, 2479–2484 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Joaquin, M. & Watson, R. J. Cell cycle regulation by the B-Myb transcription factor. Cell. Mol. Life Sci. 60, 2389–2401 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Zhan, M. et al. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PLoS ONE 7, e42350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ansieau, S., Kowenz-Leutz, E., Dechend, R. & Leutz, A. B-Myb, a repressed trans-activating protein. J. Mol. Med. 75, 815–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Lane, S., Farlie, P. & Watson, R. B-Myb function can be markedly enhanced by cyclin A-dependent kinase and protein truncation. Oncogene 14, 2445–2453 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Sala, A. et al. Activation of human B-MYB by cyclins. Proc. Natl Acad. Sci. USA 94, 532–536 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ziebold, U., Bartsch, O., Marais, R., Ferrari, S. & Klempnauer, K. H. Phosphorylation and activation of B-Myb by cyclin A-Cdk2. Curr. Biol. 7, 253–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Johnson, T. K., Schweppe, R. E., Septer, J. & Lewis, R. E. Phosphorylation of B-Myb regulates its transactivation potential and DNA binding. J. Biol. Chem. 274, 36741–36749 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Saville, M. K. & Watson, R. J. The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties. Oncogene 17, 2679–2689 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Katzen, A. L. et al. Drosophila myb is required for the G2/M transition and maintenance of diploidy. Genes Dev. 12, 831–843 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Okada, M., Akimaru, H., Hou, D. X., Takahashi, T. & Ishii, S. Myb controls G(2)/M progression by inducing cyclin B expression in the Drosophila eye imaginal disc. EMBO J. 21, 675–684 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wen, H., Andrejka, L., Ashton, J., Karess, R. & Lipsick, J. S. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev. 22, 601–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fung, S. M., Ramsay, G. & Katzen, A. L. Mutations in Drosophila myb lead to centrosome amplification and genomic instability. Development 129, 347–359 (2002).

    CAS  PubMed  Google Scholar 

  74. Manak, J. R., Mitiku, N. & Lipsick, J. S. Mutation of the Drosophila homologue of the Myb protooncogene causes genomic instability. Proc. Natl Acad. Sci. USA 99, 7438–7443 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shepard, J. L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl Acad. Sci. USA 102, 13194–13199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Osterloh, L. et al. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J. 26, 144–157 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Beall, E. L. et al. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev. 21, 904–919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Davidson, C. J., Tirouvanziam, R., Herzenberg, L. A. & Lipsick, J. S. Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in hemocytes. Genetics 169, 215–229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kittler, R. et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. Nature Cell Biol. 9, 1401–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Matsuo, T., Kuramoto, H., Kumazaki, T., Mitsui, Y. & Takahashi, T. LIN54 harboring a mutation in CHC domain is localized to the cytoplasm and inhibits cell cycle progression. Cell Cycle 11, 3227–3236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Charrasse, S., Carena, I., Brondani, V., Klempnauer, K. H. & Ferrari, S. Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway. Oncogene 19, 2986–2995 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Down, C. F., Millour, J., Lam, E. W. & Watson, R. J. Binding of FoxM1 to G2/M gene promoters is dependent upon B-Myb. Biochim. Biophys. Acta 1819, 855–862 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, X. et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol. Cell. Biol. 33, 227–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Laoukili, J. et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biol. 7, 126–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, I. C. et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell. Biol. 25, 10875–10894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Korver, W., Roose, J., Wilson, A. & Clevers, H. The winged-helix transcription factor Trident is expressed in actively dividing lymphocytes. Immunobiology 198, 157–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Laoukili, J. et al. Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol. Cell. Biol. 28, 3076–3087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park, H. J., Costa, R. H., Lau, L. F., Tyner, A. L. & Raychaudhuri, P. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol. Cell. Biol. 28, 5162–5171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Korver, W. et al. Uncoupling of S phase and mitosis in cardiomyocytes and hepatocytes lacking the winged-helix transcription factor Trident. Curr. Biol. 8, 1327–1330 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Y. & Ness, S. A. Myb proteins: angels and demons in normal and transformed cells. Front. Biosci. 16, 1109–1131 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  92. Lorvellec, M. et al. B-Myb is critical for proper DNA duplication during an unperturbed S phase in mouse embryonic stem cells. Stem Cells 28, 1751–1759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Littler, D. R. et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 38, 4527–4538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fu, Z. et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nature Cell Biol. 10, 1076–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Thomas, L. R. & Tansey, W. P. Proteolytic control of the oncoprotein transcription factor Myc. Adv. Cancer Res. 110, 77–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Whitfield, M. L., George, L. K., Grant, G. D. & Perou, C. M. Common markers of proliferation. Nature Rev. Cancer 6, 99–106 (2006).

    Article  CAS  Google Scholar 

  97. Rhodes, D. R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA 101, 9309–9314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Thorner, A. R. et al. In vitro and in vivo analysis of B-Myb in basal-like breast cancer. Oncogene 28, 742–751 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. O'Connell, M. J. et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J. Clin. Oncol. 28, 3937–3944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tian, S. et al. Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark. Insights 5, 129–138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Garcia, P., Berlanga, O., Watson, R. & Frampton, J. Generation of a conditional allele of the B-myb gene. Genesis 43, 189–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Clarke, M. et al. MYBL2 haploinsufficiency increases susceptibility to age-related haematopoietic neoplasia. Leukemia 27, 661–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Testa, J. R., Kinnealey, A., Rowley, J. D., Golde, D. W. & Potter, D. Deletion of the long arm of chromosome 20 [del(20)(q11)] in myeloid disorders. Blood 52, 868–877 (1978).

    CAS  PubMed  Google Scholar 

  106. Mullier, F. et al. Morphology, cytogenetics, and survival in myelodysplasia with del(20q) or ider(20q): a multicenter study. Ann. Hematol. 91, 203–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, M. et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 66, 3593–3602 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Kalin, T. V. et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 66, 1712–1720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, I. M. et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 66, 2153–2161 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Dibb, M. et al. The FOXM1-PLK1 axis is commonly upregulated in oesophageal adenocarcinoma. Br. J. Cancer 107, 1766–1775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Z., Banerjee, S., Kong, D., Li, Y. & Sarkar, F. H. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res. 67, 8293–8300 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Francis, R. E. et al. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int. J. Oncol. 35, 57–68 (2009).

    CAS  PubMed  Google Scholar 

  113. Lok, G. T. et al. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS ONE 6, e23790 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genet. 38, 1043–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Masselink, H., Vastenhouw, N. & Bernards, R. B-myb rescues ras-induced premature senescence, which requires its transactivation domain. Cancer Lett. 171, 87–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  117. Hu, J., Deng, H. & Friedman, E. A. Ovarian cancer cells, not normal cells, are damaged by Mirk/Dyrk1B kinase inhibition. Int. J. Cancer 132, 2258–2269 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Mannefeld, M., Klassen, E. & Gaubatz, S. B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res. 69, 4073–4080 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Quaas, M., Muller, G. A. & Engeland, K. p53 can repress transcription of cell cycle genes through a p21WAF1/CIP1-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11, 4661–4672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Toettcher, J. E. et al. Distinct mechanisms act in concert to mediate cell cycle arrest. Proc. Natl Acad. Sci. USA 106, 785–790 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Giangrande, P. H. et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev. 18, 2941–2951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Westendorp, B. et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 40, 3511–3523 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Christensen, J. et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 33, 5458–5470 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Logan, N. et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene 24, 5000–5004 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Maiti, B. et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280, 18211–18220 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sim, C. K., Perry, S., Tharadra, S. K., Lipsick, J. S. & Ray, A. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex. Genes Dev. 26, 2483–2498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rovani, M. K., Brachmann, C. B., Ramsay, G. & Katzen, A. L. The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin. Dev. Biol. 372, 88–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Petrella, L. N. et al. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 138, 1069–1079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lewis, P. W. et al. Drosophila lin-52 acts in opposition to repressive components of the Myb-MuvB/dREAM complex. Mol. Cell. Biol. 32, 3218–3227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tabuchi, T. M. et al. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex. PLoS Genet. 7, e1002074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Swanton, C. et al. Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390, 184–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Ellis, M. et al. Degradation of p27Kip cdk inhibitor triggered by Kaposi's sarcoma virus cyclin–cdk6 complex. EMBO J. 18, 644–653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aksoy, O. et al. The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence. Genes Dev. 26, 1546–1557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Carvajal, L. A., Hamard, P. J., Tonnessen, C. & Manfredi, J. J. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev. 26, 1533–1545 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, H. Z. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nature Cell Biol. 14, 1192–1202 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Slansky, J. E. & Farnham, P. J. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208, 1–30 (1996).

    CAS  PubMed  Google Scholar 

  138. Tao, Y., Kassatly, R. F., Cress, W. D. & Horowitz, J. M. Subunit composition determines E2F DNA-binding site specificity. Mol. Cell. Biol. 17, 6994–7007 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ness, S. A., Marknell, A. & Graf, T. The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 59, 1115–1125 (1989).

    Article  CAS  PubMed  Google Scholar 

  140. Mizuguchi, G. et al. DNA binding activity and transcriptional activator function of the human B-myb protein compared with c-MYB. J. Biol. Chem. 265, 9280–9284 (1990).

    CAS  PubMed  Google Scholar 

  141. Korver, W., Roose, J. & Clevers, H. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res. 25, 1715–1719 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Flowers, S., G. R. Jr & Moran, E. Tissue-specific gene targeting by the multiprotein mammalian DREAM complex. J. Biol. Chem. 286, 27867–27871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the many helpful discussions about DREAM with L. Litovchick, N. Dyson, M. Botchan and K. Engeland. This work was supported in part by US Public Health Service grants P01CA050661 and R01CA63113 to J.A.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. DeCaprio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadasivam, S., DeCaprio, J. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13, 585–595 (2013). https://doi.org/10.1038/nrc3556

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3556

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer