Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron and cancer: more ore to be mined

Key Points

  • Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to cells and tissues. Excess iron can contribute to tumour initiation and tumour growth.

  • Epidemiological evidence links increased body iron stores to increased cancer risk. High intake of dietary iron is associated with an increased risk for some cancers, particularly colorectal cancer. Hereditary haemochromatosis, a genetic disease that leads to excess iron accumulation, is associated with increased cancer risk.

  • Many types of cancer cells reprogramme iron metabolism in ways that result in net iron influx. They upregulate proteins that are involved in iron uptake, such as transferrin receptor 1 (TFR1), STEAP proteins and lipocalin 2 (LCN2), and decrease the expression of iron efflux proteins, such as ferroportin. Other iron-regulatory proteins, such as IRP1 and IRP2, contribute to cancer in ways that are less well understood.

  • Iron is crucial to many fundamental cellular processes, including DNA synthesis, proliferation, cell cycle regulation and the function of proteins containing iron–sulphur clusters. Iron–sulphur cluster-containing proteins include enzymes that contribute to maintaining genomic stability, as well as respiratory function.

  • Iron regulates crucial signalling pathways in tumours, including the hypoxia-inducible factor (HIF) and WNT pathways.

  • Measuring the expression of genes encoding proteins involved in iron metabolism may be useful in cancer prognosis. The expression of ferroportin, hepcidin, TFR1, haemochromatosis (HFE) and other genes involved in iron metabolism is linked to the prognosis of patients with breast cancer.

  • Iron is a target for cancer therapy. Iron chelators, TFR1 antibodies and cytotoxic ligands conjugated to transferrin (TF) represent some ways in which iron is being exploited therapeutically.

Abstract

Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of systemic iron homeostasis in humans.
Figure 2: Key steps in mammalian cellular iron metabolism.
Figure 3: Iron uptake and efflux in malignant and non-malignant cells.
Figure 4: Control of cellular iron metabolism by the IRE–IRP regulatory axis.
Figure 5: Links between iron, DNA metabolism and genomic integrity.
Figure 6: A role for iron in canonical WNT signalling.

Similar content being viewed by others

References

  1. Crichton, R. in Iron Metabolism: from Molecular Mechanisms to Cinical Consequences 17–58 (John Wiley and Sons, 2009).

    Book  Google Scholar 

  2. Inoue, S. & Kawanishi, S. Hydroxyl radical production and human DNA damage induced by ferric nitrilotriacetate and hydrogen peroxide. Cancer Res. 47, 6522–6527 (1987).

    CAS  PubMed  Google Scholar 

  3. Dizdaroglu, M., Rao, G., Halliwell, B. & Gajewski, E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 285, 317–324 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Dizdaroglu, M. & Jaruga, P. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 46, 382–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, J. A. Effects of precipitated silica and of iron oxide on the incidence of primary lung tumours in mice. Br. Med. J. 2, 275–280 (1940).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richmond, H. G. Induction of sarcoma in the rat by iron-dextran complex. Br. Med. J. 1, 947–949 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hann, H. W., Stahlhut, M. W. & Blumberg, B. S. Iron nutrition and tumor growth: decreased tumor growth in iron-deficient mice. Cancer Res. 48, 4168–4170 (1988).

    CAS  PubMed  Google Scholar 

  8. Hann, H. W., Stahlhut, M. W. & Menduke, H. Iron enhances tumor growth. Observation on spontaneous mammary tumors in mice. Cancer 68, 2407–2410 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Stevens, R. G., Graubard, B. I., Micozzi, M. S., Neriishi, K. & Blumberg, B. S. Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int. J. Cancer 56, 364–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Stevens, R. G., Jones, D. Y., Micozzi, M. S. & Taylor, P. R. Body iron stores and the risk of cancer. New Engl. J. Med. 319, 1047–1052 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. van Asperen, I. A., Feskens, E. J., Bowles, C. H. & Kromhout, D. Body iron stores and mortality due to cancer and ischaemic heart disease: a 17-year follow-up study of elderly men and women. Int. J. Epidemiol. 24, 665–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Knekt, P. et al. Body iron stores and risk of cancer. Int. J. Cancer 56, 379–382 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, T., Sempos, C. T., Freudenheim, J. L., Muti, P. & Smit, E. Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann. Epidemiol. 14, 195–201 (2004).

    Article  PubMed  Google Scholar 

  14. Nelson, R. L. Iron and colorectal cancer risk: human studies. Nutr. Rev. 59, 140–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kabat, G. C., Miller, A. B., Jain, M. & Rohan, T. E. Dietary iron and haem iron intake and risk of endometrial cancer: a prospective cohort study. Br. J. Cancer 98, 194–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Mursu, J., Robien, K., Harnack, L. J., Park, K. & Jacobs, D. R. Jr. Dietary supplements and mortality rate in older women: the Iowa Women's Health Study. Arch. Intern. Med. 171, 1625–1633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ward, M. H. et al. Heme iron from meat and risk of adenocarcinoma of the esophagus and stomach. Eur. J. Cancer Prev. 21, 134–138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cross, A. J., Pollock, J. R. & Bingham, S. A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 63, 2358–2360 (2003).

    CAS  PubMed  Google Scholar 

  19. Choi, J. Y. et al. Iron intake, oxidative stress-related genes (MnSOD and MPO) and prostate cancer risk in CARET cohort. Carcinogenesis 29, 964–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong, C. C. et al. Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol. Biomarkers Prev. 16, 1784–1794 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Pietrangelo, A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139, 393–408 (2010).

    Article  PubMed  Google Scholar 

  22. Bradbear, R. A. et al. Cohort study of internal malignancy in genetic hemochromatosis and other chronic nonalcoholic liver diseases. J. Natl Cancer Inst. 75, 81–84 (1985).

    CAS  PubMed  Google Scholar 

  23. Milman, N. et al. Clinically overt hereditary hemochromatosis in Denmark 1948-1985: epidemiology, factors of significance for long-term survival, and causes of death in 179 patients. Ann. Hematol. 80, 737–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Elmberg, M. et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology 125, 1733–1741 (2003).

    Article  PubMed  Google Scholar 

  25. Niederau, C. et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Hsing, A. W. et al. Cancer risk following primary hemochromatosis: a population-based cohort study in Denmark. Int. J. Cancer 60, 160–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Osborne, N. J. et al. HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 51, 1311–1318 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Edgren, G. et al. Donation frequency, iron loss, and risk of cancer among blood donors. J. Natl Cancer Inst. 100, 572–579 (2008).

    Article  PubMed  Google Scholar 

  29. Andrews, N. C. Forging a field: the golden age of iron biology. Blood 112, 219–230 (2008). Excellent overall review of recent advances in iron biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daniels, T. R. et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta 1820, 291–317 (2012). Summary of past and current strategies used to target TFR1 for anticancer therapy.

    Article  CAS  PubMed  Google Scholar 

  31. Brooks, D. et al. Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6. Clin. Cancer Res. 1, 1259–1265 (1995).

    CAS  PubMed  Google Scholar 

  32. Taetle, R., Castagnola, J. & Mendelsohn, J. Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies. Cancer Res. 46, 1759–1763 (1986).

    CAS  PubMed  Google Scholar 

  33. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nature Genet. 37, 1264–1269 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Knutson, M. D. Steap proteins: implications for iron and copper metabolism. Nutr. Rev. 65, 335–340 (2007).

    Article  PubMed  Google Scholar 

  35. Leng, X., Wu, Y. & Arlinghaus, R. B. Relationships of lipocalin 2 with breast tumorigenesis and metastasis. J. Cell. Physiol. 226, 309–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Fan, Y. & Mei, Z. NGAL and NGALR overexpression in human hepatocellular carcinoma toward a molecular prognostic classification. Cancer Epidemiol. 36, e294–e299 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Leung, L. et al. Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma. PLoS ONE 7, e46677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini review. J. Basic Microbiol. 26 Jun 2012 (doi:10.1002/jobm.201100552).

  39. Bao, G. et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nature Chem. Biol. 6, 602–609 (2010).

    Article  CAS  Google Scholar 

  40. Devireddy, L. R., Hart, D. O., Goetz, D. H. & Green, M. R. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141, 1006–1017 (2010). References 39 and 40 were the first to identify endogenous mammalian siderophores.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandez, C. A. et al. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin. Cancer Res. 11, 5390–5395 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, J., McNeish, B., Butterfield, C. & Moses, M. A. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J 27, 45–50 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Berger, T., Cheung, C. C., Elia, A. J. & Mak, T. W. Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc. Natl Acad. Sci. USA 107, 2995–3000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cramer, E. P. et al. No effect of NGAL/lipocalin-2 on aggressiveness of cancer in the MMTV-PyMT/FVB/N mouse model for breast cancer. PLoS ONE 7, e39646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, H. J. et al. Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells. Int. J. Cancer 118, 2490–2497 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, Y. et al. NGAL expression is elevated in both colorectal adenoma-carcinoma sequence and cancer progression and enhances tumorigenesis in xenograft mouse models. Clin. Cancer Res. 17, 4331–4340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bauer, M. et al. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res. Treat. 108, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wenners, A. S. et al. Neutrophil gelatinase-associated lipocalin (NGAL) predicts response to neoadjuvant chemotherapy and clinical outcome in primary human breast cancer. PLoS ONE 7, e45826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, K. J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Radulescu, S. et al. Luminal iron levels govern intestinal tumorigenesis after apc loss in vivo. Cell Rep. 2, 270–282 (2012). This paper provides a mechanistic explanation of how excess iron contributes to intestinal tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  51. Tsuji, Y., Kwak, E., Saika, T., Torti, S. V. & Torti, F. M. Preferential repression of the H subunit of ferritin by adenovirus E1A in NIH-3T3 mouse fibroblasts. J. Biol. Chem. 268, 7270–7275 (1993).

    CAS  PubMed  Google Scholar 

  52. Kakhlon, O., Gruenbaum, Y. & Cabantchik, Z. I. Repression of ferritin expression modulates cell responsiveness to H-ras-induced growth. Biochem. Soc. Trans. 30, 777–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kakhlon, O., Gruenbaum, Y. & Cabantchik, Z. I. Ferritin expression modulates cell cycle dynamics and cell responsiveness to H-ras-induced growth via expansion of the labile iron pool. Biochem. J. 363, 431–436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, F., Wang, W., Tsuji, Y., Torti, S. V. & Torti, F. M. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J. Biol. Chem. 283, 33911–33918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tong, W. H. et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20, 315–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shpyleva, S. I. et al. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat. 126, 63–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, X. et al. Heavy chain ferritin siRNA delivered by cationic liposomes increases sensitivity of cancer cells to chemotherapeutic agents. Cancer Res. 71, 2240–2249 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Torti, S. V. et al. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J. Biol. Chem. 263, 12638–12644 (1988).

    CAS  PubMed  Google Scholar 

  60. Kwak, E. L., Larochelle, D. A., Beaumont, C., Torti, S. V. & Torti, F. M. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J. Biol. Chem. 270, 15285–15293 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ruddell, R. G. et al. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology 49, 887–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Alkhateeb, A. A., Han, B. & Connor, J. R. Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res. Treat. 137, 733–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Cortes, D. F. et al. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress. Free Radic. Biol. Med. 50, 1565–1574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004). Ground-breaking study demonstrating that hepcidin binds to ferroportin and triggers its degradation.

    Article  CAS  PubMed  Google Scholar 

  66. Ganz, T. & Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823, 1434–1443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim. Biophys. Acta 1823, 1426–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lonnerdal, B. Trace element transport in the mammary gland. Annu. Rev. Nutr. 27, 165–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2, 43ra56 (2010). This paper demonstrates that levels of ferroportin affect breast cancer cell growth, are altered in patients with breast cancer and affect the prognosis of patients with breast cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Jiang, X. P., Elliott, R. L. & Head, J. F. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res. 30, 759–765 (2010).

    CAS  Google Scholar 

  71. Miller, L. D. et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 71, 6728–6737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Weinberg, E. D. & Miklossy, J. Iron withholding: a defense against disease. J. Alzheimers Dis. 13, 451–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Weinberg, E. D. Iron withholding: a defense against infection and neoplasia. Physiol. Rev. 64, 65–102 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Maes, K. et al. In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood 116, 3635–3644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hohaus, S. et al. Anemia in Hodgkin's lymphoma: the role of interleukin-6 and hepcidin. J. Clin. Oncol. 28, 2538–2543 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Hubert, N. & Hentze, M. W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc. Natl Acad. Sci. USA 99, 12345–12350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Galy, B., Ferring-Appel, D., Kaden, S., Grone, H. J. & Hentze, M. W. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell. Metab. 7, 79–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Maffettone, C., Chen, G., Drozdov, I., Ouzounis, C. & Pantopoulos, K. Tumorigenic properties of iron regulatory protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS ONE 5, e10163 (2010). This work suggests that IRPs can modify tumour growth in ways that are independent of their effects on iron metabolism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chen, G., Fillebeen, C., Wang, J. & Pantopoulos, K. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis 28, 785–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Recalcati, S. et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40, 824–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Corna, G. et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95, 1814–1822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116, 1574–1584 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Han, J. et al. Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells. PLoS ONE 6, e23800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, L. et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl Acad. Sci. USA 107, 3505–3510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coffman, L. G. et al. Regulatory effects of ferritin on angiogenesis. Proc. Natl Acad. Sci. USA 106, 570–575 (2009). This paper demonstrates that extracellular ferritin can antagonize the activity of endogenous antiangiogenic proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tesfay, L., Huhn, A. J., Hatcher, H., Torti, F. M. & Torti, S. V. Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells. PLoS ONE 7, e40030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ackroyd, R., Shorthouse, A. J. & Stephenson, T. J. Gastric carcinoma in siblings with Friedreich's ataxia. Eur. J. Surg. Oncol. 22, 301–303 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Kidd, A. et al. Breast cancer in two sisters with Friedreich's ataxia. Eur. J. Surg. Oncol. 27, 512–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Lill, R. et al. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823, 1491–1508 (2012). Review of recent advances in mechanisms of iron–sulphur cluster biogenesis.

    Article  CAS  PubMed  Google Scholar 

  92. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Shoichet, S. A. et al. Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Hum. Mol. Genet. 11, 815–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Thierbach, R. et al. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum. Mol. Genet. 14, 3857–3864 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Schulz, T. J. et al. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J. Biol. Chem. 281, 977–981 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Thierbach, R. et al. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals. Biochem. J. 432, 165–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Keith, B., Johnson, R. S. & Simon, M. C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Rev. Cancer 12, 9–22 (2012).

    Article  CAS  Google Scholar 

  98. Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82, 3610–3615 (1993).

    CAS  PubMed  Google Scholar 

  100. Tacchini, L., Bianchi, L., Bernelli-Zazzera, A. & Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274, 24142–24146 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Lok, C. N. & Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 274, 24147–24152 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, P. J. et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272, 5375–5381 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Mukhopadhyay, C. K., Mazumder, B. & Fox, P. L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275, 21048–21054 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mastrogiannaki, M. et al. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009). This paper demonstrates the role of HIF2α in iron absorption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shah, Y. M., Matsubara, T., Ito, S., Yim, S. H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell. Metab. 9, 152–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xue, X. et al. Hypoxia-inducible factor-2alpha activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 72, 2285–2293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Terada, N., Or, R., Szepesi, A., Lucas, J. J. & Gelfand, E. W. Definition of the roles for iron and essential fatty acids in cell cycle progression of normal human T lymphocytes. Exp. Cell Res. 204, 260–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Thelander, L. & Graslund, A. Mechanism of inhibition of mammalian ribonucleotide reductase by the iron chelate of 1-formylisoquinoline thiosemicarbazone. Destruction of the tyrosine free radical of the enzyme in an oxygen-requiring reaction. J. Biol. Chem. 258, 4063–4066 (1983).

    CAS  PubMed  Google Scholar 

  110. Thelander, L., Graslund, A. & Thelander, M. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem. Biophys. Res. Commun. 110, 859–865 (1983).

    Article  CAS  PubMed  Google Scholar 

  111. Martin, L. K. et al. A dose escalation and pharmacodynamic study of triapine and radiation in patients with locally advanced pancreas cancer. Int. J. Radiat. Oncol. Biol. Phys. 84, e475–e481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu, Y. et al. Iron chelators for the treatment of cancer. Curr. Med. Chem. 19, 2689–2702 (2012). Recent summary of progress and challenges in the development of iron chelators as anticancer therapeutics.

    Article  CAS  PubMed  Google Scholar 

  113. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Shao, J. et al. In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res. 64, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, P. et al. 2.6 A X-ray crystal structure of human p53R2, a p53-inducible ribonucleotide reductase. Biochemistry 48, 11134–11141 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Netz, D. J. et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nature Chem. Biol. 8, 125–132 (2012).

    Article  CAS  Google Scholar 

  117. Veatch, J. R., McMurray, M. A., Nelson, Z. W. & Gottschling, D. E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247–1258 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J. R. & White, M. F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Karanja, K. K., Cox, S. W., Duxin, J. P., Stewart, S. A. & Campbell, J. L. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 11, 3983–3996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barber, L. J. et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stehling, O. et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337, 195–199 (2012). Identification of MMS19 as a scaffolding protein involved in the assembly of a subset of iron–sulphur cluster-containing proteins involved in genome integrity, and demonstration of the role of this pathway in the response to DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lorsbach, R. B. et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Thomson, J. et al. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol. 13, R93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  126. Kulp, K. S., Green, S. L. & Vulliet, P. R. Iron deprivation inhibits cyclin-dependent kinase activity and decreases cyclin D/CDK4 protein levels in asynchronous MDA-MB-453 human breast cancer cells. Exp. Cell Res. 229, 60–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Nurtjahja-Tjendraputra, E., Fu, D., Phang, J. M. & Richardson, D. R. Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression. Blood 109, 4045–4054 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Ornstein, D. L. & Zacharski, L. R. Iron stimulates urokinase plasminogen activator expression and activates NF-kappa B in human prostate cancer cells. Nutr. Cancer 58, 115–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Tsukamoto, H. Iron regulation of hepatic macrophage TNFalpha expression. Free Radic. Biol. Med. 32, 309–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Pang, H. et al. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J. Biol. Chem. 279, 1491–1498 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, Y. & Richardson, D. R. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J. Biol. Chem. 286, 15413–15427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  133. Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Rev. Cancer 8, 387–398 (2008).

    Article  CAS  Google Scholar 

  134. Brookes, M. J. et al. A role for iron in Wnt signalling. Oncogene 27, 966–975 (2008). One of the first papers demonstrating the connection between iron and WNT signalling.

    Article  CAS  PubMed  Google Scholar 

  135. Seril, D. N. et al. Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig. Dis. Sci. 47, 1266–1278 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Ilsley, J. N. et al. Dietary iron promotes azoxymethane-induced colon tumors in mice. Nutr. Cancer 49, 162–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Song, S. et al. Wnt inhibitor screen reveals iron dependence of beta-catenin signaling in cancers. Cancer Res. 71, 7628–7639 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Coombs, G. S. et al. Modulation of Wnt/beta-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer. Oncogene 31, 213–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Ebina, Y. et al. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum-nitrilotriacetate complexes in rats. J. Natl Cancer Inst. 76, 107–113 (1986).

    CAS  PubMed  Google Scholar 

  140. Hamazaki, S., Okada, S., Ebina, Y., Fujioka, M. & Midorikawa, O. Nephrotoxicity of ferric nitrilotriacetate. An electron-microscopic and metabolic study. Am. J. Pathol. 123, 343–350 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, J. L., Okada, S., Hamazaki, S., Ebina, Y. & Midorikawa, O. Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res. 47, 1867–1869 (1987).

    CAS  PubMed  Google Scholar 

  142. Toyokuni, S., Mori, T. & Dizdaroglu, M. DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int. J. Cancer 57, 123–128 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Jiang, L. et al. Deletion and single nucleotide substitution at G.:C in the kidney of gpt delta transgenic mice after ferric nitrilotriacetate treatment. Cancer Sci. 97, 1159–1167 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Hiroyasu, M. et al. Specific allelic loss of p16 (INK4A) tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis. Am. J. Pathol. 160, 419–424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Akatsuka, S. et al. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS ONE 7, e43403 (2012). This study establishes a direct connection between iron-induced genomic alterations and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu, Y. et al. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J. Biol. Chem. 286, 15980–15988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yacyshyn, O. K. et al. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis 12, 25–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Estrov, Z. et al. In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood 69, 757–761 (1987).

    CAS  PubMed  Google Scholar 

  149. Yamasaki, T., Terai, S. & Sakaida, I. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med. 365, 576–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Hatcher, H. C., Singh, R. N., Torti, F. M. & Torti, S. V. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med. Chem. 1, 1643–1670 (2009).

    CAS  Google Scholar 

  151. Whitnall, M., Howard, J., Ponka, P. & Richardson, D. R. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl Acad. Sci. USA 103, 14901–14906 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Melotte, V. et al. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J. 24, 4153–4166 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, Z. et al. The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem. 287, 17016–17028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Crepin, R. et al. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas. Cancer Res. 70, 5497–5506 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Hatcher, H., Planalp, R., Cho, J., Torti, F. M. & Torti, S. V. Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci. 65, 1631–1652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jiao, Y. et al. Iron chelation in the biological activity of curcumin. Free Radic. Biol. Med. 40, 1152–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Jiao, Y. et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113, 462–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, L. et al. Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem. 49, 3963–3972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Adams, B. K. et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 12, 3871–3883 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, X. et al. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by a 5-lipoxygenase inhibitor, garcinol. Nutr. Cancer 64, 1211–1218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Cozzi, A. et al. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J. Biol. Chem. 275, 25122–25129 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Cozzi, A. et al. Analysis of the biologic functions of H and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood 103, 2377–2383 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, W., Knovich, M. A., Coffman, L. G., Torti, F. M. & Torti, S. V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 1800, 760–769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jezequel, P. et al. Validation of tumor-associated macrophage ferritin light chain as a prognostic biomarker in node-negative breast cancer tumors: A multicentric 2004 national PHRC study. Int. J. Cancer 131, 426–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Carpagnano, G. E. et al. Could exhaled ferritin and SOD be used as markers for lung cancer and prognosis prediction purposes? Eur. J. Clin. Invest. 42, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Kim, Y. et al. Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model. In Vivo 25, 887–893 (2011).

    CAS  PubMed  Google Scholar 

  168. Chifman, J. et al. The core control system of intracellular iron homeostasis: a mathematical model. J. Theor. Biol. 300, 91–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Laubenbacher, R. et al. A systems biology view of cancer. Biochim. Biophys. Acta 1796, 129–139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hower, V. et al. A general map of iron metabolism and tissue-specific subnetworks. Mol. Biosyst 5, 422–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sanchez, M., Galy, B., Muckenthaler, M. U. & Hentze, M. W. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nature Struct. Mol. Biol. 14, 420–426 (2007).

    Article  CAS  Google Scholar 

  172. Abeysinghe, R. D. et al. p53-independent apoptosis mediated by tachpyridine, an anti-cancer iron chelator. Carcinogenesis 22, 1607–1614 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Lui, G. Y. et al. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol. 83, 179–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Liu, Y. T. et al. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway. Am. J. Pathol. 171, 1978–1988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ba, Q. et al. Iron deprivation suppresses hepatocellular carcinoma growth in experimental studies. Clin. Cancer Res. 17, 7625–7633 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Fracanzani, A. L. et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology 33, 647–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Hann, H. W., Stahlhut, M. W. & Hann, C. L. Effect of iron and desferoxamine on cell growth and in vitro ferritin synthesis in human hepatoma cell lines. Hepatology 11, 566–569 (1990).

    Article  CAS  PubMed  Google Scholar 

  178. Boult, J. et al. Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res. 14, 379–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Yue, J. et al. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol. Pharm. 9, 1919–1931 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Brookes, M. J. et al. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut 55, 1449–1460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Eberhard, Y. et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 114, 3064–3073 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Torti, S. V. et al. Tumor cell cytotoxicity of a novel metal chelator. Blood 92, 1384–1389 (1998).

    CAS  PubMed  Google Scholar 

  183. Zhou, H. et al. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer 127, 2467–2477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Greene, B. T. et al. Activation of caspase pathways during iron chelator-mediated apoptosis. J. Biol. Chem. 277, 25568–25575 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Turner, J. et al. Tachpyridine, a metal chelator, induces G2 cell-cycle arrest, activates checkpoint kinases, and sensitizes cells to ionizing radiation. Blood 106, 3191–3199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kovacevic, Z., Chikhani, S., Lovejoy, D. B. & Richardson, D. R. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer. Mol. Pharmacol. 80, 598–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Yu, Y., Suryo Rahmanto, Y. & Richardson, D. R. Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br. J. Pharmacol. 165, 148–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fukushima, T. et al. Iron chelation therapy with deferasirox induced complete remission in a patient with chemotherapy-resistant acute monocytic leukemia. Anticancer Res. 31, 1741–1744 (2011).

    PubMed  Google Scholar 

  189. Yen, Y. et al. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother. Pharmacol. 54, 331–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Knox, J. J. et al. Phase II study of Triapine in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Invest. New Drugs 25, 471–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Ma, B. et al. A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest. New Drugs 26, 169–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Chao, J. et al. A phase I and pharmacokinetic study of oral 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in the treatment of advanced-stage solid cancers: a California Cancer Consortium Study. Cancer Chemother. Pharmacol. 69, 835–843 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by grants R01 CA171101 (F.M.T.) and R01DK071892 (S.V.T.) from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suzy V. Torti or Frank M. Torti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Fenton reaction

A chemical reaction in which ferrous iron reacts with hydrogen peroxide to produce the hydroxyl radical. Iron oxidized during this reaction can be reduced back to ferrous iron in the presence of superoxide (a by-product of respiration). The sum of these reactions is the iron-catalysed formation of hydroxyl radicals from superoxide (termed the Haber–Weiss reaction).

Siderophore

A low molecular mass compound that has a high affinity for chelating iron.

Iron–sulphur clusters

Assemblies of iron and inorganic sulphur that function as protein cofactors.

Hereditary haemochromatosis

Inherited disorder caused by mutations in several different genes that leads to the accumulation of iron to excess levels in parenchymal tissues.

Phlebotomy

Drawing or removing blood from the circulation.

Enterocytes

Intestinal epithelial cells that have major roles in the absorption of nutrients, including iron.

Iron recycling

Reuse of cellular iron. Typically occurs through the catabolism of senescent red blood cells by macrophages of the liver and spleen.

Friedreich's ataxia

Inherited disorder of the neurodegenerative system.

Warburg effect

The propensity of cancer cells to shift from aerobic respiration to glycolysis for the generation of ATP, even in the presence of adequate oxygen levels. The name derives from the hypothesis proposed by Otto Warburg in 1924 that cancer is driven by the non-oxidative breakdown of glucose.

Acyl hydrazones

Chemical substances containing oxygen and nitrogen donor ligands that coordinate iron.

Cytoreduction

Decreasing the number of cancer cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torti, S., Torti, F. Iron and cancer: more ore to be mined. Nat Rev Cancer 13, 342–355 (2013). https://doi.org/10.1038/nrc3495

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing