Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics

Key Points

  • For a century, seemingly non-applied research carried out in Drosophila melanogaster has provided the first glimpse into the mechanism of action of human cancer-related proteins.

  • Natural malignant tumours can occur in D. melanogaster.

  • Tumours can also be experimentally induced in larvae and adult flies either by knocking down fly tumour suppressor genes or by recreating in flies the mutant conditions that are causative of certain human cancer types. Current examples of this 'a la carte' design include cancer models of glioblastoma, rhabdomyosarcoma, multiple endocrine neoplasia and leukaemia.

  • D. melanogaster tumours range from hyperplasias to frankly malignant neoplasias that are invasive and lethal to the host.

  • Both the presence and the lack of supernumerary centrosomes can cause tumours in the larval brain, but unbalanced karyotypes do not. Thus, in D. melanogaster, Boveri's hypothesis does not apply, but centrosome dysfunction is linked to cancer.

  • The origin of the widespread genome instability that is characteristic of cancer cells is likely to be multifactorial.

  • The loss of cell polarity in cells that divide asymmetrically, as well as in epithelial tissues, is often tumorigenic.

  • The Aurora and POLO protein kinases are tumour suppressors in the larval brain.

  • The activation of signalling pathways that sense low calorie intake and inhibit target of rapamycin (TOR) compromises cortical polarity and contributes to tumour growth.

  • Data derived from D. melanogaster strongly substantiate the view that timely repression of gene expression programmes during development has a pronounced tumour suppression function.

  • D. melanogaster lethal (3) malignant brain tumour (l(3)mbt) tumours recapitulate the ectopic expression of cancer germline (CG; also known as cancer testis (CT)) genes that are observed in many types of somatic human tumours. In D. melanogaster, inactivation of some CG genes inhibits tumour growth.

  • D. melanogaster is starting to have an important role in chemical genetics, helping to identify the pathways that are affected by current pharmaceuticals, facilitating the design of more efficient derivatives and serving as a platform for semi-automated screens for new anticancer drugs.

Abstract

For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using eye development for functional assays.
Figure 2: Tumours in flies.
Figure 3: Different routes to genomic instability.
Figure 4: Testing Boveri's hypothesis in flies.
Figure 5: Whole-organism screening in Drosophila melanogaster larvae.

Similar content being viewed by others

References

  1. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  2. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brumby, A. M. & Richardson, H. E. Using Drosophila melanogaster to map human cancer pathways. Nature Rev. Cancer 5, 626–639 (2005).

    Article  CAS  Google Scholar 

  4. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nature Rev. Cancer 11, 338–351 (2011).

    Article  CAS  Google Scholar 

  6. Pancewicz, J. & Nicot, C. Current views on the role of Notch signaling and the pathogenesis of human leukemia. BMC Cancer 1166, 502 (2011).

    Article  CAS  Google Scholar 

  7. Purow, B. Notch inhibitors as a new tool in the war on cancer: a pathway to watch. Curr. Pharm. Biotechnol. 10, 154–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barakat, M. T., Humke, E. W. & Scott, M. P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med. 16, 337–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harvey, K. & Tapon, N. The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nature Rev. Cancer 7, 182–191 (2007).

    Article  CAS  Google Scholar 

  10. Staley, B. K. & Irvine, K. D. Hippo signaling in Drosophila: recent advances and insights. Dev. Dyn. 241, 3–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135–4145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wadham, C., Gamble, J. R., Vadas, M. A. & Khew-Goodall, Y. The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates β-catenin. Mol. Biol. Cell 14, 2520–2529 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poernbacher, I., Baumgartner, R., Marada, S. K., Edwards, K. & Stocker, H. Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr. Biol. 22, 389–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Hanratty, W. P. & Dearolf, C. R. The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol. Gen. Genet. 238, 33–37 (1993).

    CAS  PubMed  Google Scholar 

  16. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Baker, N. E. Cell competition. Curr. Biol. 21, R11–R15 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Johnston, L. A. Competitive interactions between cells: death, growth, and geography. Science 324, 1679–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morata, G. & Martin, F. A. Cell competition: the embrace of death. Dev. Cell 13, 1–2 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Moreno, E. Is cell competition relevant to cancer? Nature Rev. Cancer 8, 141–147 (2008).

    Article  CAS  Google Scholar 

  22. Chen, C. L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl Acad. Sci. USA 109, 484–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lolo, F. N., Casas-Tinto, S. & Moreno, E. Cell competition time line: winners kill losers, which are extruded and engulfed by hemocytes. Cell Rep. 2, 526–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Portela, M. et al. Drosophila SPARC is a self-protective signal expressed by loser cells during cell competition. Dev. Cell 19, 562–573 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Menendez, J., Perez-Garijo, A., Calleja, M. & Morata, G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc. Natl Acad. Sci. USA 107, 14651–14656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schroeder, M. C., Chen, C. L., Gajewski, K. & Halder, G. A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. Oncogene 29 Oct 2012 (doi:10.1038/onc.2012.476).

  27. Rodrigues, A. B. et al. Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Development 139, 4051–4061 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vincent, J. P., Kolahgar, G., Gagliardi, M. & Piddini, E. Steep differences in wingless signaling trigger Myc-independent competitive cell interactions. Dev. Cell 21, 366–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohsawa, S. et al. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev. Cell 20, 315–328 (2011). This paper follows tumorigenic events by live microscopy.

    Article  CAS  PubMed  Google Scholar 

  30. Cordero, J. B. et al. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev. Cell 18, 999–1011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sunkel, C. E. & Glover, D. M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25–38 (1988).

    PubMed  Google Scholar 

  32. Glover, D. M., Leibowitz, M. H., McLean, D. A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Vader, G. & Lens, S. M. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta 1786, 60–72 (2008).

    CAS  PubMed  Google Scholar 

  34. Archambault, V. & Glover, D. M. Polo-like kinases: conservation and divergence in their functions and regulation. Nature Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  Google Scholar 

  35. de Carcer, G., Manning, G. & Malumbres, M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10, 2255–2262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Carcer, G., Perez de Castro, I. & Malumbres, M. Targeting cell cycle kinases for cancer therapy. Curr. Med. Chem. 14, 969–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Roberts, D. M., Pronobis, M. I., Poulton, J. S., Kane, E. G. & Peifer, M. Regulation of Wnt signaling by the tumor suppressor adenomatous polyposis coli does not require the ability to enter the nucleus or a particular cytoplasmic localization. Mol. Biol. Cell 23, 2041–2056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takacs, C. M. et al. Dual positive and negative regulation of wingless signaling by adenomatous polyposis coli. Science 319, 333–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, L. Y. et al. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146, 435–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Klovstad, M., Abdu, U. & Schupbach, T. Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint. PLoS Genet. 466, e31 (2008).

    Article  CAS  Google Scholar 

  42. Thomas, B. J. & Wassarman, D. A. A fly's eye view of biology. Trends Genet. 15, 184–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol. 20, 573–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Poon, C. L., Lin, J. I., Zhang, X. & Harvey, K. F. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev. Cell 21, 896–906 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Song, Z., Saghafi, N., Gokhale, V., Brabant, M. & Meuillet, E. J. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster. Exp. Cell Res. 313, 1161–1171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rao, P. R., Makhijani, K. & Shashidhara, L. S. Human APC sequesters β-catenin even in the absence of GSK-3β in a Drosophila model. Oncogene 27, 2488–2493 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Martinsson, T. et al. Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy. Cancer Res. 71, 98–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Chand, D. et al. Cell and Drosophila model systems define three classes of ALK mutations in neuroblastoma. Dis. Model. Mech. 25 Oct 2012 (doi:10.1242/dmm.010348).

  50. Pereira, P. S. et al. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum. Mol. Genet. 15, 1704–1712 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Caldeira, J. et al. CPEB1, a novel gene silenced in gastric cancer: a Drosophila approach. Gut 61, 1115–1123 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Botham, C. M., Wandler, A. M. & Guillemin, K. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog. 466, e1000064 (2008).

    Article  CAS  Google Scholar 

  53. Miles, W. O., Dyson, N. J. & Walker, J. A. Modeling tumor invasion and metastasis in Drosophila. Dis. Model. Mech. 4, 753–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salomon, R. N. & Jackson, F. R. Tumors of testis and midgut in aging flies. Fly 2, 265–268 (2008). This paper describes evidence of natural tumours in flies.

    Article  PubMed  Google Scholar 

  55. Golubovsky, M. D., Weisman, N. Y., Arbeev, K. G., Ukraintseva, S. V. & Yashin, A. I. Decrease in the lgl tumor suppressor dose in Drosophila increases survival and longevity in stress conditions. Exp. Gerontol. 41, 819–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez, C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nature Rev. Genet. 8, 462–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Watson, K. L., Justice, R. W. & Bryant, P. J. Drosophila in cancer research: the first fifty tumor suppressor genes. J. Cell Sci. Suppl. 18, 19–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978). This paper identified the first tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  59. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Harris, H., Miller, O. J., Klein, G., Worst, P. & Tachibana, T. Suppression of malignancy by cell fusion. Nature 223, 363–368 (1969).

    Article  CAS  PubMed  Google Scholar 

  61. Harris, H. A long view of fashions in cancer research. Bioessays 27, 833–838 (2005).

    Article  PubMed  Google Scholar 

  62. Singh, S. R., Liu, W. & Hou, S. X. The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1, 191–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeng, X., Singh, S. R., Hou, D. & Hou, S. X. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J. Cell. Physiol. 224, 766–774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neumuller, R. A. et al. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8, 580–593 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010). References 65–67 demonstrated cooperative tumorigenesis in D. melanogaster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elsum, I., Yates, L., Humbert, P. O. & Richardson, H. E. The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem. 53, 141–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Pearson, H. B. et al. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J. Clin. Invest. 121, 4257–4267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohsawa, S. et al. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490, 547–551 (2012). This paper modelled the contribution of mitochondrial dysfunction to tumour growth.

    Article  CAS  PubMed  Google Scholar 

  71. Wallace, D. C. Mitochondria and cancer. Nature Rev. Cancer 12, 685–698 (2012).

    Article  CAS  Google Scholar 

  72. Dekanty, A., Barrio, L., Muzzopappa, M., Auer, H. & Milan, M. Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc. Natl Acad. Sci. USA 109, 20549–20554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perez-Garijo, A., Shlevkov, E. & Morata, G. The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136, 1169–1177 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Read, R. D., Cavenee, W. K., Furnari, F. B. & Thomas, J. B. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 566, e1000374 (2009).

    Article  CAS  Google Scholar 

  75. Witte, H. T., Jeibmann, A., Klambt, C. & Paulus, W. Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia 11, 882–888 (2009). References 74 and 75 used D. melanogaster to model glioblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Q. et al. Pax genes in embryogenesis and oncogenesis. J. Cell. Mol. Med. 12, 2281–2294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Galindo, R. L., Allport, J. A. & Olson, E. N. A. Drosophila model of the rhabdomyosarcoma initiator PAX7-FKHR. Proc. Natl Acad. Sci. USA 103, 13439–13444 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Avirneni-Vadlamudi, U. et al. Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma. J. Clin. Invest. 122, 403–407 (2012). This paper used D. melanogaster to identify genes involved in rhabdomyosarcomagenesis.

    Article  CAS  PubMed  Google Scholar 

  79. Jung, S. H., Evans, C. J., Uemura, C. & Banerjee, U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521–2533 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V. & Banerjee, U. The hematopoietic stem cell and its niche: a comparative view. Genes Dev. 21, 3044–3060 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Sinenko, S. A. et al. Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 116, 4612–4620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Osman, D. et al. A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc. Natl Acad. Sci. USA 106, 12043–12048 (2009). This paper used D. melanogaster to identify genes involved in leukaemogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wandler, A. M. & Guillemin, K. Transgenic expression of the Helicobacter pylori virulence factor CagA promotes apoptosis or tumorigenesis through JNK activation in Drosophila. PLoS Pathog. 866, e1002939 (2012).

    Article  CAS  Google Scholar 

  85. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Cordero, J., Vidal, M. & Sansom, O. APC as a master regulator of intestinal homeostasis and transformation: from flies to vertebrates. Cell Cycle 8, 2926–2931 (2009).

    Article  PubMed  Google Scholar 

  88. Cordero, J. B., Stefanatos, R. K., Scopelliti, A., Vidal, M. & Sansom, O. J. Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila. EMBO J. 31, 3901–3917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, W. C., Beebe, K., Sudmeier, L. & Micchelli, C. A. Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136, 2255–2264 (2009). References 88 and 89 describe the role of Wingless signalling in tumour suppression in the fly gut.

    Article  CAS  PubMed  Google Scholar 

  90. Apidianakis, Y., Pitsouli, C., Perrimon, N. & Rahme, L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc. Natl Acad. Sci. USA 106, 20883–20888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, H. & Edgar, B. A. Intestinal stem cell function in Drosophila and mice. Curr. Opin. Genet. Dev. 22, 354–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z. & Edgar, B. A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8, 84–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability-an evolving hallmark of cancer. Nature Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  Google Scholar 

  95. Holland, A. J. & Cleveland, D. W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McGranahan, N., Burrell, R. A., Endesfelder, D., Novelli, M. R. & Swanton, C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 13, 528–538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pfau, S. J. & Amon, A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 13, 515–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raffa, G. D., Ciapponi, L., Cenci, G. & Gatti, M. Terminin: a protein complex that mediates epigenetic maintenance of Drosophila telomeres. Nucleus 2, 383–391 (2011).

    Article  PubMed  Google Scholar 

  99. Muller, H. J. An analysis of the process of structural change in chromosomes of Drosophila. J. Genet. 40, 1–66 (1940).

    Article  Google Scholar 

  100. Titen, S. W. & Golic, K. G. Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster. Genetics 180, 1821–1832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Morciano, P. et al. A conserved role for the mitochondrial citrate transporter Sea/SLC25A1 in the maintenance of chromosome integrity. Hum. Mol. Genet. 18, 4180–4188 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Fox, D. T., Gall, J. G. & Spradling, A. C. Error-prone polyploid mitosis during normal Drosophila development. Genes Dev. 24, 2294–2302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anderhub, S. J., Kramer, A. & Maier, B. Centrosome amplification in tumorigenesis. Cancer Lett. 322, 8–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nature Genet. 37, 1125–1129 (2005). This paper describes a causal link between failed asymmetric division and tumour growth.

    Article  CAS  PubMed  Google Scholar 

  105. Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032–1042 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE 466, e6564 (2009).

    Article  CAS  Google Scholar 

  108. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Castellanos, E., Dominguez, P. & Gonzalez, C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209–1214 (2008). Together with reference 105, these papers demonstrated that centrosome dysfunction causes tumours in D. melanogaster larval brains.

    Article  CAS  PubMed  Google Scholar 

  110. Kusano, K., Berres, M. E. & Engels, W. R. Evolution of the RECQ family of helicases: a Drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151, 1027–1039 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Garcia, A. M. et al. Loss of the bloom syndrome helicase increases DNA ligase 4-independent genome rearrangements and tumorigenesis in aging Drosophila. Genome Biol. 1266, R121 (2011). This paper showed a direct correlation between compromised DNA integrity and an increased rate of spontaneous tumours in D. melanogaster.

    Article  CAS  Google Scholar 

  112. Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 236, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Westhoff, B. et al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA 106, 22293–22298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Sugiarto, S. et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20, 328–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goulas, S., Conder, R. & Knoblich, J. A. The par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 11, 529–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Egger, B., Chell, J. M. & Brand, A. H. Insights into neural stem cell biology from flies. Phil. Trans. R. Soc. B 363, 39–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Egger, B., Gold, K. S. & Brand, A. H. Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly 5, 237–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Martin-Belmonte, F. & Perez-Moreno, M. Epithelial cell polarity, stem cells and cancer. Nature Rev. Cancer 12, 23–38 (2012).

    Article  CAS  Google Scholar 

  122. Chang, K. C., Wang, C. & Wang, H. Balancing self-renewal and differentiation by asymmetric division: insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays 34, 301–310 (2012).

    Article  PubMed  Google Scholar 

  123. Januschke, J. & Gonzalez, C. Drosophila asymmetric division, polarity and cancer. Oncogene 27, 6994–7002 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, H., Ouyang, Y., Somers, W. G., Chia, W. & Lu, B. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449, 96–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee, C. Y. et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474 (2006). References 124–126 demonstrated that the Aurora and POLO kinases act as tumour suppressors in the larval brain of D. melanogaster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brachmann, S., Fritsch, C., Maira, S. M. & Garcia-Echeverria, C. PI3K and mTOR inhibitors: a new generation of targeted anticancer agents. Curr. Opin. Cell Biol. 21, 194–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Willecke, M., Toggweiler, J. & Basler, K. Loss of PI3K blocks cell-cycle progression in a Drosophila tumor model. Oncogene 30, 4067–4074 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Rossi, F. & Gonzalez, C. Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Rep. 13, 157–162 (2011).

    Article  PubMed Central  CAS  Google Scholar 

  130. Martins, T., Maia, A. F., Steffensen, S. & Sunkel, C. E. Sgt1, a co-chaperone of Hsp90 stabilizes Polo and is required for centrosome organization. EMBO J. 28, 234–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Andersen, R. O., Turnbull, D. W., Johnson, E. A. & Doe, C. Q. Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. Dev. Biol. 363, 258–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bonaccorsi, S. et al. The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development 134, 2183–2193 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Yamamoto, Y., Izumi, Y. & Matsuzaki, F. The GC kinase Fray and Mo25 regulate Drosophila asymmetric divisions. Biochem. Biophys. Res. Commun. 366, 212–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Mirouse, V., Swick, L. L., Kazgan, N., St Johnston, D. & Brenman, J. E. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387–392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Richly, H., Aloia, L. & Di Croce, L. Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis. 266, e204 (2011).

    Article  CAS  Google Scholar 

  137. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nature Genet. 41, 1076–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Feng, S., Thomas, S. & Wang, J. Diverse tumor pathology due to distinctive patterns of JAK/STAT pathway activation caused by different Drosophila polyhomeotic alleles. Genetics 190, 279–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gonzalez, I., Simon, R. & Busturia, A. The Polyhomeotic protein induces hyperplastic tissue overgrowth through the activation of the JAK/STAT pathway. Cell Cycle 8, 4103–4111 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Classen, A. K., Bunker, B. D., Harvey, K. F., Vaccari, T. & Bilder, D. A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nature Genet. 41, 1150–1155 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nature Rev. Cancer 5, 615–625 (2005).

    Article  CAS  Google Scholar 

  143. Curran, S. P., Wu, X., Riedel, C. G. & Ruvkun, G. A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Geldmacher, A., Freier, A., Losch, F. O. & Walden, P. Therapeutic vaccination for cancer immunotherapy: antigen selection and clinical responses. Hum. Vaccin. 7, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Gateff, E., Loffler, T. & Wismar, J. A temperature-sensitive brain tumor suppressor mutation of Drosophila melanogaster: developmental studies and molecular localization of the gene. Mech. Dev. 41, 15–31 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010). This paper describes a D. melanogaster model of somatic tumour growth that is driven by ectopic expression of germline genes.

    Article  CAS  PubMed  Google Scholar 

  147. Meier, K. et al. LINT, a novel dL(3)mbt-containing complex, represses malignant brain tumour signature genes. PLoS Genet. 866, e1002676 (2012).

    Article  CAS  Google Scholar 

  148. Georlette, D. et al. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 21, 2880–2896 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Munos, B. Lessons from 60 years of pharmaceutical innovation. Nature Rev. Drug Discov. 8, 959–968 (2009).

    Article  CAS  Google Scholar 

  150. Pandey, U. B. & Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gladstone, M. & Su, T. T. Chemical genetics and drug screening in Drosophila cancer models. J. Genet. Genom. 38, 497–504 (2011).

    Article  CAS  Google Scholar 

  152. Kim, B. H. et al. A small-molecule compound identified through a cell-based screening inhibits JAK/STAT pathway signaling in human cancer cells. Mol. Cancer Ther. 7, 2672–2680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim, B. H. et al. MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br. J. Haematol. 148, 132–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Kim, B. H. et al. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling. Exp. Mol. Med. 43, 313–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gonsalves, F. C. et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc. Natl Acad. Sci. USA 108, 5954–5963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Read, R. D. et al. A Drosophila model of multiple endocrine neoplasia type 2. Genetics 171, 1057–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vidal, M., Wells, S., Ryan, A. & Cagan, R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 65, 3538–3541 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Das, T. & Cagan, R. Drosophila as a novel therapeutic discovery tool for thyroid cancer. Thyroid 20, 689–695 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012). This paper used a D. melanogaster tumour model to optimize anticancer drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jaklevic, B. et al. Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174, 1963–1972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Edwards, A. et al. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis. Model. Mech. 4, 496–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jolad, S. D. et al. Bouvardin and deoxybouvardin, antitumor cyclic hexapeptides from Bouvardia ternifolia (Rubiaceae). J. Am. Chem. Soc. 99, 8040–8044 (1977).

    Article  CAS  PubMed  Google Scholar 

  163. Gladstone, M. et al. A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. Dis. Model. Mech. 5, 342–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Willoughby, L. F. et al. An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis. Model. Mech. 20 Sep 2012 (doi:10.1242/dmm.009985). References 163 and 164 describe pioneering in vivo chemical screens for cancer treatment drugs using D. melanogaster.

  165. Hardy, P. A. & Zacharias, H. Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol. Int. 29, 983–992 (2005).

    Article  PubMed  Google Scholar 

  166. Dickson, B. & Hafen, E. in The Development of Drosophila Melanogaster ( eds Bate, M. & Martinez-Arias, A. ) 1327–1362 (Cold Spring Harbor Laboratory Press, 1993).

  167. Morris, E. J. et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bello, B., Reichert, H. & Hirth, F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133, 2639–2648 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is very grateful to T. T. Su, Y. Zheng, S. Llamazares, E. Scheenaard, J. Januschke, J. Reina, F. Rossi, J. Petrovic, J. Pampalona and G. Pollarollo for critical reading of the manuscript. Research in the author's laboratory is funded by grants BFU2009-07975/BMC, BFU2012-32522, CENIT ONCOLOGICA-20091016, SGR Agaur 2009 CG041413 and ERC-2011-AdG 294603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cayetano Gonzalez.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Glossary

Genetic screens

Experimental technique aimed at identifying mutant genes that cause a particular phenotype.

D. melanogaster neuroblasts

Precursors that generate neural tissue.

Rhabdomyosarcoma

Malignancy of muscle myoblasts that fail to exit the cell cycle and do not fuse into syncytial skeletal muscle.

Syncytial skeletal muscle

Muscle made of multinucleated cells, also known as fibres, formed by the fusion of thousands of individual myoblast cells.

Differentiation therapy

Reprogramming neoplastic cells to terminally differentiate.

Multipolar spindles

Spindles that have more than two poles.

Lagging chromosomes

Chromosomes that fail poleward anaphase movement.

Apico-basal cortical polarity

An unequal build-up of certain molecules on either the apical or the basal side of the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13, 172–183 (2013). https://doi.org/10.1038/nrc3461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3461

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer