Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medulloblastomics: the end of the beginning

Key Points

  • Medulloblastoma is the most common malignant paediatric brain tumour and is a leading cause of cancer-related morbidity and mortality in children.

  • Integrative genomic studies have recently identified at least four distinct molecular subgroups of medulloblastoma — WNT, sonic hedgehog (SHH), Group 3 and Group 4 — which exhibit highly discriminate transcriptional, cytogenetic and mutational spectra in addition to divergent patient demographics and clinical behaviour.

  • Recent next-generation sequencing of medulloblastoma samples and their matched constitutional DNA has led to the identification of a multitude of previously unknown candidate genes that are somatically mutated in this cancer, including many that are mutated in a subgroup-specific manner.

  • Different mechanisms of structural variation, including somatic copy number aberrations, chromothripsis and tetraploidy, contribute to a considerable proportion of medulloblastomas and may be more prevalent than recurrent somatic mutations in Group 3 and Group 4 tumours.

  • Despite the extensive amount of copy number and sequence data that has become available for large cohorts of medulloblastoma, most Group 3 and Group 4 tumours cannot be attributed to a specific driver mutation or mutations, suggesting that additional mechanisms, such as epigenetic deregulation, may also have a prominent role.

  • Research on medulloblastoma during the next few years will be focused on the functional validation of candidate genes and molecular processes that were reported to be deregulated in the recent human genomic studies. The generation of faithful models that recapitulate these mutational events will become a priority, and such reagents will be a valuable resource for the development of rational, molecularly targeted therapies.

Abstract

The division of medulloblastoma into different subgroups by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour. Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup. The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets. In this Review, we summarize the 'explosion' of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups. These data are currently making their way into clinical trials as we seek to integrate conventional and molecularly targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Meta-analysis of medulloblastoma next-generation sequencing studies.
Figure 2: Novel mutations and genomic targets in medulloblastoma subgroups.
Figure 3: Convergent deregulation of the histone code in medulloblastoma.
Figure 4: Correlation of cytogenetic alterations and somatic mutations in Group 3 and Group 4 medulloblastoma.

Similar content being viewed by others

References

  1. Pui, C. H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A. & Pappo, A. S. Challenging issues in pediatric oncology. Nature Rev. Clin. Oncol. 8, 540–549 (2011).

    Article  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  3. Gajjar, A. et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St. Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 7, 813–820 (2006).

    Article  PubMed  Google Scholar 

  4. Rutkowski, S. et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J. Clin. Oncol. 28, 4961–4968 (2010).

    Article  PubMed  Google Scholar 

  5. Ellison, D. W. et al. β-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005). This study was the first to show that CTNNB1 -mutated medulloblastomas, which would subsequently define the WNT subgroup, have an excellent prognosis compared with non- CTNNB1 -mutated cases.

    Article  CAS  PubMed  Google Scholar 

  6. Packer, R. J. & Vezina, G. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch. Neurol. 65, 1419–1424 (2008).

    Article  PubMed  Google Scholar 

  7. Mabbott, D. J., Penkman, L., Witol, A., Strother, D. & Bouffet, E. Core neurocognitive functions in children treated for posterior fossa tumors. Neuropsychology 22, 159–168 (2008).

    Article  PubMed  Google Scholar 

  8. Mabbott, D. J. et al. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 23, 2256–2263 (2005).

    Article  PubMed  Google Scholar 

  9. Spiegler, B. J., Bouffet, E., Greenberg, M. L., Rutka, J. T. & Mabbott, D. J. Change in neurocognitive functioning after treatment with cranial radiation in childhood. J. Clin. Oncol. 22, 706–713 (2004).

    Article  PubMed  Google Scholar 

  10. Low, J. A. & de Sauvage, F. J. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28, 5321–5326 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ng, J. M. & Curran, T. The Hedgehog's tale: developing strategies for targeting cancer. Nature Rev. Cancer 11, 493–501 (2011).

    Article  CAS  Google Scholar 

  12. Taylor, M. D., Mainprize, T. G. & Rutka, J. T. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47, 888–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996). References 13 and 14 implicated mutations in PTCH1 as the underlying cause of Gorlin syndrome.

    Article  CAS  PubMed  Google Scholar 

  15. Gailani, M. R. et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 69, 111–117 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  17. Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 57, 2085–2088 (1997).

    CAS  PubMed  Google Scholar 

  18. Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T. & Reifenberger, G. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 57, 2581–2585 (1997).

    CAS  PubMed  Google Scholar 

  19. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012). This study combined all published genomic data of medulloblastomas and effectivley summarized the main clinical and genomic features defining the medulloblastoma subgroups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamilton, S. R. et al. The molecular basis of Turcot's syndrome. New Engl. J. Med. 332, 839–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Zurawel, R. H., Chiappa, S. A., Allen, C. & Raffel, C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res. 58, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  22. Eberhart, C. G., Tihan, T. & Burger, P. C. Nuclear localization and mutation of β-catenin in medulloblastomas. J. Neuropathol. Exp. Neurol. 59, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Pastorino, L. et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. A 149A, 1539–1543 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002). This study identified germline and somatic mutations of SUFU in patients with medulloblastoma, establishing it as an important TSG in the SHH pathway.

    Article  CAS  PubMed  Google Scholar 

  25. Dahmen, R. P. et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 61, 7039–7043 (2001).

    CAS  PubMed  Google Scholar 

  26. Baeza, N., Masuoka, J., Kleihues, P. & Ohgaki, H. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22, 632–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Smyth, I. et al. Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum. Mol. Genet. 8, 291–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Koch, A. et al. Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int. J. Cancer 121, 284–291 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lam, C. W. et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18, 833–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012). References 32 to 34 were the first studies to apply next-generation sequencing to large cohorts of medulloblastoma samples in order to catalogue the prevalent somatic mutations in the disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012). This study used WGS to describe the genomic landscape of medulloblastomas arising in patients with LFS, uncovering chromothripsis as a signature event in this subset of patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Northcott, P. A. et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 69, 3249–3255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3088 (2008). References 37 and 38 were the first to report the existence of distinct molecular subgroups of medulloblastoma based on unsupervised analyses of transcriptional profiles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    Article  PubMed  Google Scholar 

  40. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011). References 39 and 40 are highly complementary studies on the genomic and clinical characteristics of medulloblastoma subgroups and instigated the definition of the currently recognized consensus subgroups.

    Article  PubMed  Google Scholar 

  41. Remke, M. et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J. Clin. Oncol. 29, 3852–3861 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012). This report is the consensus statement on the four subgroup structure of medulloblastoma agreed on by the medulloblastoma community.

    Article  CAS  PubMed  Google Scholar 

  43. Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nature Rev. Neurol. 8, 340–351 (2012).

    Article  CAS  Google Scholar 

  44. Northcott, P. A., Dubuc, A. M., Pfister, S. & Taylor, M. D. Molecular subgroups of medulloblastoma. Expert Rev. Neurother. 12, 871–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Packer, R. J. Risk stratification of medulloblastoma: a paradigm for future childhood brain tumor management strategies. Curr. Neurol. Neurosci. Rep. 11, 124–126 (2011).

    Article  PubMed  Google Scholar 

  46. Leary, S. E. & Olson, J. M. The molecular classification of medulloblastoma: driving the next generation clinical trials. Curr. Opin. Pediatr. 24, 33–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002). This study used gene expression array profiling to discriminate different histologies of paediatric brain tumours and provided definitive molecular evidence of medulloblastoma as being distinct from other primitive neuroectodermal tumours.

    Article  CAS  PubMed  Google Scholar 

  48. Clifford, S. C. et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666–2670 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Pfaff, E. et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J. Clin. Oncol. 28, 5188–5196 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Lindsey, J. C. et al. TP53 mutations in favorable-risk Wnt/Wingless-subtype medulloblastomas. J. Clin. Oncol. 29, e344–e348 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Northcott, P. A. et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 123, 615–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010). This study described the first mouse model to faithfully recapitulate human WNT medulloblastoma and proposed LRPs as their putative cell-of-origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ellison, D. W. et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 121, 381–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brugieres, L. et al. High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J. Clin. Oncol. 30, 2087–2093 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Brugieres, L. et al. Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J. Med. Genet. 47, 142–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Garre, M. L. et al. Medulloblastoma variants: age-dependent occurrence and relation to Gorlin syndrome-a new clinical perspective. Clin. Cancer Res. 15, 2463–2471 (2009).

    Article  PubMed  Google Scholar 

  58. Huse, J. T. & Holland, E. C. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol. 19, 132–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, X., Northcott, P. A., Croul, S. & Taylor, M. D. Mouse models of medulloblastoma. Chin. J. Cancer 30, 442–449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997). This article introduced the first sporadic mouse model of medulloblastoma generated through germline deletion of one allele of the Ptch1 TSG.

    Article  CAS  PubMed  Google Scholar 

  61. Wetmore, C., Eberhart, D. E. & Curran, T. The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res. 60, 2239–2246 (2000).

    CAS  PubMed  Google Scholar 

  62. Hatton, B. A. et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 68, 1768–1776 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Hallahan, A. R. et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 64, 7794–7800 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Oliver, T. G. et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grammel, D. et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol. 123, 601–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. New Engl. J. Med. 361, 1173–1178 (2009). This study demonstrated proof-of-principle for targeted therapy of medulloblastoma through administration of a pharmacological inhibitor of SMO to a single patient with metastatic medulloblastoma, resulting in a profound but transient response and subsequent therapeutic resistance.

    Article  CAS  PubMed  Google Scholar 

  69. Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dijkgraaf, G. J. et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 71, 435–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Metcalfe, C. & de Sauvage, F. J. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 71, 5057–5061 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genet. 41, 465–472 (2009). This study used SNP arrays to identify significant copy number aberrations in the medulloblastoma genome and was the first to implicate deregulation of chromatin modifiers as an important theme in medulloblastoma biology.

    Article  CAS  PubMed  Google Scholar 

  74. Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Pei, Y. et al. An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168–180 (2012). References 75 and 76 describe the successful generation of in vivo models of MYC-driven Group 3 medulloblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    Article  PubMed  Google Scholar 

  78. Eberhart, C. G. Three down and one to go: modeling medulloblastoma subgroups. Cancer Cell 21, 137–138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21, 601–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Swartling, F. J. et al. Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 24, 1059–1072 (2010). This article introduced an elegant mouse model of MYCN-driven medulloblastoma relying on a bidirectional transgenic promoter expressing both MYCN and luciferase in the developing mouse cerebellum that generated highly penetrant mouse medulloblastomas with similar features of the human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Northcott, P. A., Rutka, J. T. & Taylor, M. D. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg. Focus 28, e6 (2010).

    Article  PubMed  Google Scholar 

  82. Ciara, E. et al. Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol. 119, 325–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Distel, L., Neubauer, S., Varon, R., Holter, W. & Grabenbauer, G. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med. Pediatr. Oncol. 41, 44–48 (2003).

    Article  PubMed  Google Scholar 

  84. Taylor, M. D. et al. Medulloblastoma in a child with Rubenstein-Taybi Syndrome: case report and review of the literature. Pediatr. Neurosurg. 35, 235–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011). This study was the first unbiased exome-wide sequencing study of medulloblastoma and identified novel recurrent somatic mutations in the chromatin modifiers MLL2 and MLL3.

    Article  CAS  PubMed  Google Scholar 

  86. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  90. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  91. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Pek, J. W. & Kai, T. DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc. Natl Acad. Sci. USA 108, 12007–12012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lai, M. C., Chang, W. C., Shieh, S. Y. & Tarn, W. Y. DDX3 regulates cell growth through translational control of cyclin E1. Mol. Cell. Biol. 30, 5444–5453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schroder, M. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem. Pharmacol. 79, 297–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, C. S. et al. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36, 4708–4718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lai, M. C., Lee, Y. H. & Tarn, W. Y. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 19, 3847–3858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosner, A. & Rinkevich, B. The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr. Med. Chem. 14, 2517–2525 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hogbom, M. et al. Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J. Mol. Biol. 372, 150–159 (2007).

    Article  PubMed  CAS  Google Scholar 

  99. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012). This study described the SCNAs present in a series of >1,000 primary medulloblastomas and led to the discovery of several novel medulloblastoma subgroup-specific alterations, including PVT1–MYC fusion genes in Group 3 medulloblastoma and tandem duplication of SNCAIP in Group 4 medulloblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sengoku, T. & Yokoyama, S. Structural basis for histone H3 Lys 27 demethylation by UTX/KDM6A. Genes Dev. 25, 2266–2277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, E. & Song, J. J. Diverse ways to be specific: a novel Zn-binding domain confers substrate specificity to UTX/KDM6A histone H3 Lys 27 demethylase. Genes Dev. 25, 2223–2226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kooistra, S. M. & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nature Rev. Mol. Cell Biol. 13, 297–311 (2012).

    Article  CAS  Google Scholar 

  103. Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Schnetz, M. P. et al. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 6, e1001023 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bajpai, R. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schnetz, M. P. et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alimova, I. et al. Targeting the enhancer of zeste homologue 2 in medulloblastoma. International journal of cancer. J. Inter. Cancer 131, 1800–1809 (2012).

    Article  CAS  Google Scholar 

  110. Oberoi, J. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nature Struct. Mol. Biol. 18, 177–184 (2011).

    Article  CAS  Google Scholar 

  111. Chin, L., Hahn, W. C., Getz, G. & Meyerson, M. Making sense of cancer genomic data. Genes Dev. 25, 534–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Satow, R., Kurisaki, A., Chan, T. C., Hamazaki, T. S. & Asashima, M. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 11, 763–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, Y. et al. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl Acad. Sci. USA 104, 6596–6601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Han, S. et al. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123–3137 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Cogen, P. H. et al. Involvement of multiple chromosome 17p loci in medulloblastoma tumorigenesis. Am. J. Hum. Genet. 50, 584–589 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cogen, P. H., Daneshvar, L., Metzger, A. K. & Edwards, M. S. Deletion mapping of the medulloblastoma locus on chromosome 17p. Genomics 8, 279–285 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Biegel, J. A., Burk, C. D., Barr, F. G. & Emanuel, B. S. Evidence for a 17p tumor related locus distinct from p53 in pediatric primitive neuroectodermal tumors. Cancer Res. 52, 3391–3395 (1992).

    CAS  PubMed  Google Scholar 

  118. Adamson, D. C. et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 70, 181–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Pfister, S. et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 27, 1627–1636 (2009).

    Article  PubMed  Google Scholar 

  120. Mendrzyk, F. et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J. Clin. Oncol. 23, 8853–8862 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Li, M. et al. Multiple CDK/CYCLIND genes are amplified in medulloblastoma and supratentorial primitive neuroectodermal brain tumor. Cancer Genet. 205, 220–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Le Guezennec, X. & Bulavin, D. V. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem. Sci. 35, 109–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Castellino, R. C. et al. Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J. Neurooncol. 86, 245–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Doucette, T. A. et al. WIP1 enhances tumor formation in a sonic hedgehog-dependent model of medulloblastoma. Neurosurgery 70, 1003–1010 (2012).

    Article  PubMed  Google Scholar 

  125. Huppi, K. et al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol. Cancer Res. 6, 212–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Beck-Engeser, G. B. et al. Pvt1-encoded microRNAs in oncogenesis. Retrovirology 5, 4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Guan, Y. et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin. Cancer Res. 13, 5745–5755 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Engelender, S. et al. Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions. Nature Genet. 22, 110–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Chung, K. K. et al. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nature Med. 7, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Eyal, A. & Engelender, S. Synphilin isoforms and the search for a cellular model of lewy body formation in Parkinson's disease. Cell Cycle 5, 2082–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jones, D. T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  134. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W. & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990). References 133 and 134 established germline TP53 mutations as the underlying cause of LFS.

    Article  CAS  PubMed  Google Scholar 

  135. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121, 1–84 (2008).

    Google Scholar 

  137. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  139. Fujii, Y., Hongo, T. & Hayashi, Y. Chromosome analysis of brain tumors in childhood. Genes Chromosomes Cancer 11, 205–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Tomita, T., Das, L. & Radkowski, M. A. Bone metastases of medulloblastoma in childhood; correlation with flow cytometric DNA analysis. J. Neurooncol. 8, 113–120 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Giangaspero, F. et al. “Desmoplastic” versus “classic” medulloblastoma: comparison of DNA content, histopathology and differentiation. Virchows Archiv. A Pathol. Anat. Histopathol. 418, 207–214 (1991).

    Article  CAS  Google Scholar 

  142. Zerbini, C. et al. Prognostic factors in medulloblastoma, including DNA ploidy. J. Clin. Oncol. 11, 616–622 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Keles, G. E. et al. Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol. Res. 7, 493–503 (1995).

    CAS  PubMed  Google Scholar 

  144. Rajcan-Separovic, E. et al. Interphase fluorescence in situ hybridization and DNA flow cytometry analysis of medulloblastomas with a normal karyotype. Cancer Genet. Cytogenet. 133, 94–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Castedo, M. et al. Selective resistance of tetraploid cancer cells against DNA damage-induced apoptosis. Ann. NY Acad. Sci. 1090, 35–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Rello-Varona, S. et al. Preferential killing of tetraploid tumor cells by targeting the mitotic kinesin Eg5. Cell Cycle 8, 1030–1035 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Vitale, I. et al. Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS ONE 2, e1337 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Strahm, B. & Malkin, D. Hereditary cancer predisposition in children: genetic basis and clinical implications. Int. J. Cancer 119, 2001–2006 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Searles Nielsen, S. et al. Family cancer history and risk of brain tumors in children: results of the SEARCH international brain tumor study. Cancer Causes Control 19, 641–648 (2008).

    Article  PubMed  Google Scholar 

  152. Marth, G. T. et al. The functional spectrum of low-frequency coding variation. Genome Biol. 12, R84 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  154. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  156. Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nature Rev. Genet. 12, 87–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Parmigiani, G. et al. Design and analysis issues in genome-wide somatic mutation studies of cancer. Genomics 93, 17–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nature Biotechnol. 29, 79–83 (2011).

    Article  CAS  Google Scholar 

  162. Copeland, N. G. & Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nature Rev. Cancer 10, 696–706 (2010).

    Article  CAS  Google Scholar 

  163. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012). This study used the SB transposon system to mutagenize the developing mouse cerebellum and generate highly penetrant metastatic mouse medulloblastomas that allowed for a direct comparison of the genes suspected to drive the primary tumours with those targeted in the matched metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ellison, D. W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

    Article  PubMed  Google Scholar 

  165. von Hoff, K. et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. Eur. J. Cancer 45, 1209–1217 (2009).

    Article  Google Scholar 

  166. Taylor, R. E. et al. Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur. J. Cancer 41, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Packer, R. J. Childhood brain tumors: accomplishments and ongoing challenges. J. Child Neurol. 23, 1122–1127 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gilbertson, R. J. Mapping cancer origins. Cell 145, 25–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999). This study identified the link between SHH signalling and cerebellar development.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was principally supported by the PedBrain Tumour Project contributing to the International Cancer Genome Consortium (ICGC), funded by German Cancer Aid (109252) and the German Federal Ministry of Education and Research (BMBF, NGFNplus #01GS0883). The authors also acknowledge the Pediatric Brain Tumour Foundation (PBTFUS), the US National Institutes of Health (R01CA148699 and R01CA159859) and the Dutch Cancer Foundations KWF (2010-4713) and KIKA. P.A.N. is a Roman Herzog PostDoctoral Fellow supported by the Hertie Foundation and the DKFZ. The authors are deeply indebted to C. Smith of Creative Science Studios for assistance with artwork. They also acknowledge C. Imbusch (DKFZ) for bioinformatic support pertaining to the meta-analysis of next-generation sequencing studies. Last, special acknowledgments are warranted for T. J. Pugh (Broad Institute), N. Jäger (DKFZ) and D. J. H. Shih (SickKids) who played lead bioinformatic roles in the respective medulloblastoma genomic studies highlighted in this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael D. Taylor or Stefan M. Pfister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Leptomeningeal dissemination

Metastasis to the leptomeninges (arachnoid mater and pia mater) that wrap the brain and spinal cord. Metastatic medulloblastoma cells typically disseminate to the leptomeninges via the cerebrospinal fluid.

Gorlin syndrome

Also known as nevoid basal cell carcinoma syndrome (NBCCS). An autosomal dominant condition in which affected individuals harbour germline mutations in patched 1 and the cells of which display aberrant activation of the sonic hedgehog signalling pathway. Individuals exhibit a variety of developmental defects including jaw cysts, palmar pits and skeletal abnormalities and they are predisposed to the development of extensive basal cell carcinomas and medulloblastoma, among other cancers.

Turcot syndrome

Typically an autosomal dominant condition characterized by multiple adenomatous colon polyps and predisposition to colorectal cancer and brain tumours. The genetic basis is linked to mutations in adenomatous polyposis coli, which predisposes to medulloblastoma, or to the mismatch repair genes MLH1 or PMS2, which predispose to glioblastoma.

Next-generation sequencing

Sequencing technologies emerging since 2005 that have substantially increased the output of the nucleic acid sequencing process. They produce millions to hundreds of millions of typically short sequence reads (50–400 bp) from amplified DNA clones.

Classic histology

The most common histological subtype of medulloblastoma, displaying prototypical sheets of repetitive small cells with a high nuclear/cytoplasmic ratio and round nuclei. Found in all medulloblastoma subgroups.

External granule cell layer

(EGL). A germinal zone comprised of cerebellar granule neuron precursors that line the surface of the developing cerebellum.

Lower rhombic lip

(LRL). A division of the rhombic lip, a specialized germinal matrix situated at the interface between the neural tube and the roofplate of the fourth ventricle of the developing cerebellum.

Dorsal brainstem

The hindmost parts of the structure of the brainstem.

Desmoplastic (or nodular) histology

Histological variant of medulloblastoma characterized by the presence of a varying number of nodules that consist of differentiated neurocytic cells and internodular desmoplasia (fibrous or connective tissue), best demonstrated by reticulin staining. Mostly restricted to the sonic hedgehog medulloblastoma subgroup.

Large-cell or anaplastic

(LCA). An admixture of two usually co-occuring histological variants of medulloblastoma associated with a more aggressive clinical phenotype and the Group 3 subgroup. Collectively, LCA medulloblastomas appear as groups of large cells with round nuclei (large cell) and cells exhibiting marked cytological pleomorphisms (anaplasia), especially nuclear pleomorphism.

Cerebellar granule neuron precursors

(CGNPs). As precursors to the most abundant neuron in the brain, CGNPs arise in the hindbrain during late embryonic development and migrate postnatally to the external granule cell layer of the cerebellum. They then undergo a period of massive proliferation before eventually migrating inwards to the internal granule layer and terminally differentiating.

Cochlear nuclei

Structures in the brainstem that derive from the auditory lower rhombic lip, receiving inputs on sound from the cochlear nerve. Cerebellar granule neuron precursors residing in the cochlear nuclei have been implicated as a possible cell-of-origin for sonic hedgehog medulloblastoma.

Isochromosome

An abnormal chromosome produced during mitosis or meiosis that is characterized by the presence of two genetically and morphologically identical chromosome arms fused at the centromere. Strictly, the common alteration of chromosome 17 in medulloblastoma is more often an isodicentric (17q), as the breakpoint is typically in the p-arm proximal to the centromere rather than at the centromere itself.

Single nucleotide variants

(SNVs). A nucleotide substitution resulting in the exchange of one nucleotide for another. In cancer, SNVs refer to single nucleotide changes present in the tumour DNA that are not present in the patient's normal genome.

Indels

Mutations involving the insertion or deletion of nucleotides, which often lead to a loss of function by causing a shift in the reading frame of a gene.

Chromothripsis

A process of erroneous DNA repair following a single catastrophic breakage event that results in massive genomic rearrangement.

Tetraploidy

A whole-genome duplication event such that each chromosome is present as four, rather than two, copies.

Lewy bodies

Abnormal protein aggregates found in the brain of individuals with Parkinson's disease, Lewy body dementia and other related disorders.

Tandem duplication

A structural variant caused by a duplication event that results in two genomic segments of at least 1 kb in size that share >90% sequence identity positioned in a contiguous manner within the genome.

Double-minute chromosomes

Typically acentric, extra-chromosomally amplified chromatin, usually containing a particular chromosomal segment or gene. Double minutes are common in cancer and often result in oncogene amplification through replication and asymmetric distribution after cell division.

Single nucleotide polymorphism

(SNP). A single nucleotide DNA sequence variant that differs between individuals or paired chromosomes from the same individual. In contrast to single nucleotide variants, these are present in the normal genome of an individual.

Aneuploidy

An abnormal number of chromosomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northcott, P., Jones, D., Kool, M. et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 12, 818–834 (2012). https://doi.org/10.1038/nrc3410

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3410

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer