Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The NAD metabolome — a key determinant of cancer cell biology

Key Points

  • NAD is an important redox factor and substrate in various signalling processes, in which it is irreversibly degraded to form molecules that are of key relevance to cellular homeostasis. Both NAD+-dependent metabolic and signalling pathways are altered in cancer cells, providing a number of potential drug targets.

  • Permanent synthesis of NAD is essential to fuel bioenergetic processes and maintain balanced cell regulation. NAD+ is synthesized from vitamin B3 (niacin, including both nicotinamide and nicotinic acid) and the corresponding nucleosides. However, the predominant source to maintain NAD levels is nicotinamide (Nam), which arises endogenously from NAD+-dependent signalling processes. Therefore, nicotinamide phosphoribosyltransferase (NamPRT) is of outstanding importance, as it is the only human enzyme that salvages Nam into NAD+ synthesis. NamPRT inhibitors are currently under scrutiny to evaluate their potential in cancer therapy based on NAD+ depletion.

  • Likewise, inhibitors of nicotinamide mononucleotide adenylyltransferases (NMNATs) have the potential to affect NAD levels, as these enzymes are required in all pathways of NAD+ generation. Moreover, the expression of the three human isoforms is tissue- and cell compartment-specific, suggesting the possibility of more specific therapeutic approaches. However, so far, specific and potent inhibitors are not available.

  • Several NAD-dependent signalling pathways are involved in the control of cell cycle progression, transcriptional regulation and DNA repair and have therefore been identified as promising targets in cancer therapy. The NAD+-dependent protein deacetylases (Sirtuins) SIRT1, SIRT3, SIRT6 and SIRT7 are also now of interest in the development of new cancer therapies.

  • Inhibitors of polyADP ribose polymerases (PARPs) have a demonstrated potential in cancer therapy and have recently reached the clinical arena. Major current challenges in their use are selectivity towards specific PARP isoforms, potential impairment of DNA repair in healthy tissues and development of drug resistance.

Abstract

NAD is a vital molecule in all organisms. It is a key component of both energy and signal transduction — processes that undergo crucial changes in cancer cells. NAD+-dependent signalling pathways are many and varied, and they regulate fundamental events such as transcription, DNA repair, cell cycle progression, apoptosis and metabolism. Many of these processes have been linked to cancer development. Given that NAD+-dependent signalling reactions involve the degradation of the molecule, permanent nucleotide resynthesis through different biosynthetic pathways is crucial for incessant cancer cell proliferation. This necessity supports the targeting of NAD metabolism as a new therapeutic concept for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Warburg effect.
Figure 2: The NAD metabolome in humans.
Figure 3: Subcellular compartmentation of NAD synthesis and signalling.
Figure 4: Effects of targeting NAD+ synthesis in cancer cells.

Similar content being viewed by others

References

  1. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    CAS  Google Scholar 

  2. Hamanaka, R. B. & Chandel, N. S. Cell biology. Warburg effect and redox balance. Science 334, 1219–1220 (2011).

    CAS  PubMed  Google Scholar 

  3. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berger, F., Ramirez-Hernandez, M. H. & Ziegler, M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111–118 (2004).

    CAS  PubMed  Google Scholar 

  5. Houtkooper, R. H., Canto, C., Wanders, R. J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010).

    CAS  PubMed  Google Scholar 

  6. Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004). This paper reports the molecular identification of NRKs in yeast and humans and demonstrates NR as an alternative NAD precursor.

    CAS  PubMed  Google Scholar 

  7. Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    CAS  PubMed  Google Scholar 

  8. Lau, C., Niere, M. & Ziegler, M. The NMN/NaMN adenylyltransferase (NMNAT) protein family. Front. Biosci. 14, 410–431 (2009).

    CAS  Google Scholar 

  9. Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide.1. Identification of intermediates. J. Biol. Chem. 233, 488–492 (1958).

    CAS  PubMed  Google Scholar 

  10. Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide.2. Enzymatic aspects. J. Biol. Chem. 233, 493–500 (1958).

    CAS  PubMed  Google Scholar 

  11. Magni, G., Orsomando, G., Raffelli, N. & Ruggieri, S. Enzymology of mammalian NAD metabolism in health and disease. Front. Biosci. 13, 6135–6154 (2008).

    CAS  PubMed  Google Scholar 

  12. Balo-Banga, J. M. & Weber, G. Increased 5-phospho-α-D-ribose-1-diphosphate synthetase (ribosephosphate pyrophosphokinase, EC 2.7.6.1) activity in rat hepatomas. Cancer Res. 44, 5004–5009 (1984).

    CAS  PubMed  Google Scholar 

  13. van Berg, A. A. et al. The IMP dehydrogenase inhibitor mycophenolic acid antagonizes the CTP synthetase inhibitor 3-deazauridine in MOLT-3 human leukemia cells: a central role for phosphoribosyl pyrophosphate. Biochem. Pharmacol. 50, 1095–1098 (1995).

    CAS  PubMed  Google Scholar 

  14. Gossmann, T. I. et al. NAD+ biosynthesis and salvage - a phylogenetic perspective. FEBS J. 279, 3355–3363 (2012).

    CAS  PubMed  Google Scholar 

  15. Burkle, A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 272, 4576–4589 (2005).

    PubMed  Google Scholar 

  16. Hassa, P. O. & Hottiger, M. O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    CAS  PubMed  Google Scholar 

  17. Schreiber, V., Dantzer, F., Ame, J. C. & de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nature Rev. Mol. Cell Biol. 7, 517–528 (2006). This paper provides an excellent overview of polyADP ribosylation and PARPs.

    CAS  Google Scholar 

  18. Rechsteiner, M., Hillyard, D. & Olivera, B. M. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature 259, 695–696 (1976).

    CAS  PubMed  Google Scholar 

  19. Revollo, J. R., Grimm, A. A. & Imai, S. I. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).

    CAS  PubMed  Google Scholar 

  20. Rongvaux, A. et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225–3234 (2002). In this paper, the catalytic function of human NamPRT is identified.

    CAS  PubMed  Google Scholar 

  21. Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-b-cell colony-enhancing factor. Mol. Cell. Biol. 14, 1431–1437 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Garten, A., Petzold, S., Korner, A., Imai, S. & Kiess, W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab. 20, 130–138 (2009).

    CAS  PubMed  Google Scholar 

  23. Hara, N., Yamada, K., Shibata, T., Osago, H. & Tsuchiya, M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS ONE. 6, e22781 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Honjo, T., Nishizuka, Y., Hayaishi, O. & Kato, I. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase 2 and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555 (1968).

    CAS  PubMed  Google Scholar 

  27. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  28. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000). References 27, 28 and 29 represent the first reports of NAD+-dependent protein deacetylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jackson, M. D. & Denu, J. M. Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of β -NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277, 18535–18544 (2002).

    CAS  PubMed  Google Scholar 

  31. Tong, L. & Denu, J. M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804, 1617–1625 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meszaros, L. G., Bak, J. & Chu, A. Cyclic ADP-ribose as an. endogenous regulator of the nonskeletal type ryanodine receptor Ca2+ channel. Nature 364, 76–79 (1993).

    CAS  PubMed  Google Scholar 

  33. Lee, H. C. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J. Biol. Chem. 280, 33693–33696 (2005).

    CAS  PubMed  Google Scholar 

  34. Young, G. S., Choleris, E., Lund, F. E. & Kirkland, J. B. Decreased cADPR and increased NAD+ in the Cd38−/− mouse. Biochem. Biophys. Res. Commun. 346, 188–192 (2006).

    CAS  PubMed  Google Scholar 

  35. Malavasi, F. et al. CD38 and chronic lymphocytic leukemia: a decade later. Blood 118, 3470–3478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chini, E. N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr. Pharm. Des. 15, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevenson, G. T. CD38 as a therapeutic target. Mol. Med. 12, 345–346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koch-Nolte, F., Kernstock, S., Mueller-Dieckmann, C., Weiss, M. S. & Haag, F. Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front. Biosci. 13, 6716–6729 (2008).

    CAS  PubMed  Google Scholar 

  39. Kato, J. et al. ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. Cancer Res. 71, 5327–5335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nature Rev. Cancer 10, 293–301 (2010).

    CAS  Google Scholar 

  41. Tong, W. M., Cortes, U. & Wang, Z. Q. Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. Biochim. Biophys. Acta 1552, 27–37 (2001).

    CAS  PubMed  Google Scholar 

  42. Kraus, W. L. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr. Opin. Cell Biol. 20, 294–302 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Krishnakumar, R. & Kraus, W. L. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 39, 8–24 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Alano, C. C. & Swanson, R. A. Players in the PARP-1 cell-death pathway: JNK1 joins the cast. Trends Biochem. Sci. 31, 309–311 (2006).

    CAS  PubMed  Google Scholar 

  45. Calvert, H. & Azzariti, A. The clinical development of inhibitors of poly(ADP-ribose) polymerase. Ann. Oncol. 22, i53–i59 (2011).

    PubMed  Google Scholar 

  46. Papeo, G. et al. Poly(ADP-ribose) polymerase inhibition in cancer therapy: are we close to maturity? Expert. Opin. Ther. Pat. 19, 1377–1400 (2009).

    CAS  PubMed  Google Scholar 

  47. Mangerich, A. & Burkle, A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int. J. Cancer 128, 251–265 (2011).

    CAS  PubMed  Google Scholar 

  48. Chan, D. A. & Giaccia, A. J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Rev. Drug Discov. 10, 351–364 (2011).

    CAS  Google Scholar 

  49. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    CAS  Google Scholar 

  50. Helleday, T. The underlying mechanisms for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  52. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    CAS  PubMed  Google Scholar 

  53. Yap, T. A., Sandhu, S. K., Carden, C. P. & de Bono, J. S. Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J. Clin. 61, 31–49 (2011).

    PubMed  Google Scholar 

  54. Chiarugi, A. A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol. Sci. 33, 42–48 (2012). This article summarizes clinical applications of PARP inhibitors and analyses the mechanisms of the observed chemoresistance.

    CAS  PubMed  Google Scholar 

  55. Chalkiadaki, A. & Guarente, L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Rev. Endocrinol. 8, 287–296 (2012).

    CAS  Google Scholar 

  56. Sauve, A. A., Wolberger, C., Schramm, V. L. & Boeke, J. D. The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435–465 (2006).

    CAS  PubMed  Google Scholar 

  57. Schwer, B. & Verdin, E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104–112 (2008).

    CAS  PubMed  Google Scholar 

  58. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Canto, C. & Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol. Rev. 64, 166–187 (2012).

    CAS  PubMed  Google Scholar 

  60. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Alhazzazi, T. Y., Kamarajan, P., Verdin, E. & Kapila, Y. L. SIRT3 and cancer: tumor promoter or suppressor? Biochim. Biophys. Acta 1816, 80–88 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Deng, C. X. SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci. 5, 147–152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, J. et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 71, 4138–4149 (2011).

    CAS  PubMed  Google Scholar 

  64. Wang, B. et al. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30, 907–921 (2011).

    CAS  PubMed  Google Scholar 

  65. Kim, J. E., Chen, J. J. & Lou, Z. K. DBC1 is a negative regulator of SIRT1. Nature 451, 583–586 (2008).

    CAS  PubMed  Google Scholar 

  66. Zhao, W. H. et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Firestein, R. et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3, e2020 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. Wang, R. H. et al. Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol. Cell 32, 11–20 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Herranz, D. & Serrano, M. SIRT1: recent lessons from mouse models. Nature Rev. Cancer 10, 819–823 (2010).

    CAS  Google Scholar 

  70. Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    CAS  PubMed  Google Scholar 

  72. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001). This paper demonstrates the regulation of p53 transcriptional activity via NAD-dependent deacetylation.

    CAS  PubMed  Google Scholar 

  73. Tao, R. D. et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sundaresan, N. R. et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758–2771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, H. S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Finley, L. W. S. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1 α destabilization. Cancer Cell 19, 416–428 (2011). This paper shows that SIRT3 regulates ROS levels and functions as a metabolic regulator via HIF1α.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bell, E. L., Emerling, B. M., Ricoult, S. J. H. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1 α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986–2996 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hiratsuka, M. et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 309, 558–566 (2003).

    CAS  PubMed  Google Scholar 

  80. Kim, H. S. et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20, 487–499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tennen, R. I. & Chua, K. F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci. 36, 39–46 (2011).

    CAS  PubMed  Google Scholar 

  82. Mao, Z. Y. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011). This paper describes a regulatory interplay between two NAD+-dependent reaction types, polyADP ribosylation and protein deacetylation, to promote DNA repair.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pillai, J. B., Isbatan, A., Imai, S. & Gupta, M. P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. J. Biol. Chem. 280, 43121–43130 (2005).

    CAS  PubMed  Google Scholar 

  85. Zhang, J. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 25, 808–814 (2003).

    CAS  PubMed  Google Scholar 

  86. Van Meter, M., Mao, Z. Y., Gorbunova, V. & Seluanov, A. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10, 3153–3158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashraf, N. et al. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer 95, 1056–1061 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. de Nigris, F. et al. Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues. Br. J. Cancer 87, 1479 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Frye, R. 'SIRT8' expressed in thyroid cancer is actually SIRT7. Br. J. Cancer 87, 1479 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barber, M. F. et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L. & Verdin, E. Mitochondrial sirtuins. Biochim. Biophys. Acta 1804, 1645–1651 (2010).

    CAS  PubMed  Google Scholar 

  92. Bogan, K. L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).

    CAS  PubMed  Google Scholar 

  93. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    PubMed  PubMed Central  Google Scholar 

  94. Belenky, P., Bogan, K. L. & Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32, 12–19 (2007).

    CAS  PubMed  Google Scholar 

  95. de Figueiredo, L. F., Gossmann, T. I., Ziegler, M. & Schuster, S. Pathway analysis of NAD+ metabolism. Biochem. J. 439, 341–348 (2011).

    CAS  PubMed  Google Scholar 

  96. Zhang, L. Q., Heruth, D. P. & Ye, S. Q. Nicotinamide phosphoribosyltransferase in human diseases. J. Bioanal. Biomed. 3, 13–25 (2011).

    PubMed  Google Scholar 

  97. Raffaelli, N. et al. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem. Biophys. Res. Commun. 297, 835–840 (2002).

    CAS  PubMed  Google Scholar 

  98. Gilley, J. & Coleman, M. P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8, e1000300 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Berger, F., Lau, C. & Ziegler, M. Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc. Natl Acad. Sci. 104, 3765–3760 (2007). In this paper, a physical and functional association between a NAD+-consuming and a NAD+-synthesizing enzyme is demonstrated.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, T. et al. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J. Biol. Chem. 287, 12405–12416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Nikiforov, A., Dölle, C., Niere, M. & Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286, 21767–21778 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pittelli, M. et al. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol. Pharmacol. 80, 1136–1146 (2011).

    CAS  PubMed  Google Scholar 

  103. Stein, L. R. & Imai, S. I. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab., 23, 420–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Branster, M. V. & Morton, R. K. Comparative rates of synthesis of diphosphopyridine nucleotide by normal and tumour tissue from mouse mammary gland; studies with isolated nuclei. Biochem. J. 63, 640–646 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Morton, R. K. Enzymic synthesis of coenzyme I in relation to chemical control of cell growth. Nature 181, 540–542 (1958).

    CAS  PubMed  Google Scholar 

  108. Petrelli, R., Felczak, K. & Cappellacci, L. NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Curr. Med. Chem. 18, 1973–1992 (2011).

    CAS  PubMed  Google Scholar 

  109. Jayaram, H. N. Biochemical mechanisms of resistance to tiazofurin. Adv. Enzyme Regul. 24, 67–89 (1985).

    CAS  PubMed  Google Scholar 

  110. Grem, J. L. et al. Clinical toxicity associated with tiazofurin. Invest. New Drugs 8, 227–238 (1990).

    CAS  PubMed  Google Scholar 

  111. Grifantini, M. Tiazofurine, I. C. N. Pharmaceuticals. Curr. Opin. Investig. Drugs 1, 257–262 (2000).

    CAS  PubMed  Google Scholar 

  112. Bi, T. Q. & Che, X. M. Nampt/PBEF/visfatin and cancer. Cancer Biol. Ther. 10, 119–125 (2010).

    CAS  PubMed  Google Scholar 

  113. Kim, S. R. et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem. Biophys. Res. Commun. 357, 150–156 (2007).

    CAS  PubMed  Google Scholar 

  114. Garten, A. et al. Nampt and its potential role in inflammation and type 2 diabetes. Handb. Exp. Pharmacol. 203, 147–164 (2011).

    CAS  Google Scholar 

  115. Hasmann, M. & Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436–7442 (2003). This paper describes the first NamPRT inhibitor that was identified as a promising antitumour agent and that has become instrumental for studies of NAD metabolism.

    CAS  PubMed  Google Scholar 

  116. Watson, M. et al. The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol. Cell. Biol. 29, 5872–5888 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lukasova, M., Hanson, J., Tunaru, S. & Offermanns, S. Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol. Sci. 32, 700–707 (2011).

    CAS  PubMed  Google Scholar 

  118. Beauparlant, P. et al. Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777. Anticancer Drugs 20, 346–354 (2009).

    CAS  PubMed  Google Scholar 

  119. Drevs, J., Loser, R., Rattel, B. & Esser, N. Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res. 23, 4853–4858 (2003).

    CAS  PubMed  Google Scholar 

  120. Kato, H. et al. Efficacy of combining GMX1777 with radiation therapy for human head and neck carcinoma. Clin. Cancer Res. 16, 898–911 (2010).

    CAS  PubMed  Google Scholar 

  121. Fleischer, T. C. et al. Chemical proteomics identifies Nampt as the target of CB30865, an orphan cytotoxic compound. Chem. Biol. 17, 659–664 (2010).

    CAS  PubMed  Google Scholar 

  122. Holen, K., Saltz, L. B., Hollywood, E., Burk, K. & Hanauske, A. R. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. New Drugs 26, 45–51 (2008).

    CAS  PubMed  Google Scholar 

  123. Hovstadius, P. et al. A Phase I study of CHS 828 in patients with solid tumor malignancy. Clin. Cancer Res. 8, 2843–2850 (2002).

    CAS  PubMed  Google Scholar 

  124. Ravaud, A. et al. Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study. Eur. J. Cancer 41, 702–707 (2005).

    CAS  PubMed  Google Scholar 

  125. von Heideman, A., Berglund, A., Larsson, R. & Nygren, P. Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother. Pharmacol. 65, 1165–1172 (2010).

    PubMed  Google Scholar 

  126. Billington, R. A., Genazzani, A. A., Travelli, C. & Condorelli, F. NAD depletion by FK866 induces autophagy. Autophagy. 4, 385–387 (2008).

    CAS  PubMed  Google Scholar 

  127. Travelli, C. et al. Reciprocal potentiation of the antitumoral activities of FK866, an inhibitor of nicotinamide phosphoribosyltransferase, and etoposide or cisplatin in neuroblastoma cells. J. Pharmacol. Exp. Ther. 338, 829–840 (2011).

    CAS  PubMed  Google Scholar 

  128. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010). In this paper, a small-molecule inhibitor of LDHA is shown to have anticancer effects and, in combination with FK866, to induce lymphoma regression.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Food and Nutrition Board. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6' Folate, Vitamin B12' Pantothenic Acid, Biotin, and Choline (Institute of Medicine, National Academy Press, 1998).

  130. Clark, J. B. & Pinder, S. Control of the steady-state concentrations of the nicotinamide nucleotides in rat liver. Biochem. J. 114, 321–330 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Deberardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    CAS  PubMed  Google Scholar 

  132. Haikal, A. A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med. 4, 241–263 (2010).

    Google Scholar 

  133. Lim, J. H. et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 α. Mol. Cell 38, 864–878 (2010).

    CAS  PubMed  Google Scholar 

  134. Zhong, L. et al. The histone deacetylase sirt6 regulates glucose homeostasis via Hif1 α. Cell 140, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.C. and R.F. would like to thank the Italian Foundation for Mutiple Sclerosis Research (FISM; grant 2009/R6) and Regione Toscana Progetto Salute 2009 for research funding. C.D. and M.Z. gratefully acknowledge financial support from the Norwegian Cancer Society (Kreftforeningen) and the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Ziegler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

ClinicalTrials.gov

FURTHER INFORMATION

BioGPS

Glossary

NADH

The reduced form of NAD.

NAD+

The oxidated form of NAD.

NAD

A term used to indicate both oxidated and reduced forms of NAD.

NamPRT

Nicotinamide phosphoribosyltransferase. Also known as Visfatin and Pre-B cell colony-enhancing factor (PBEF). The abbreviation NamPRT is in keeping with the abbreviations of corresponding enzymes in nucleotide synthesis.

Synthetic lethality

Two genes are synthetic lethal if mutation of either alone is compatible with viability but the mutation of both leads to death. Therefore, targeting a gene that is synthetic lethal to a cancer-relevant mutation should kill only cancer cells and should spare normal cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarugi, A., Dölle, C., Felici, R. et al. The NAD metabolome — a key determinant of cancer cell biology. Nat Rev Cancer 12, 741–752 (2012). https://doi.org/10.1038/nrc3340

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3340

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer