Towards the use of cannabinoids as antitumour agents


Various reports have shown that cannabinoids (the active components of marijuana and their derivatives) can reduce tumour growth and progression in animal models of cancer, in addition to their well-known palliative effects on some cancer-associated symptoms. This Opinion article discusses our current understanding of cannabinoids as antitumour agents, focusing on recent insights into the molecular mechanisms of action, including emerging resistance mechanisms and opportunities for combination therapy approaches. Such knowledge is required for the optimization of preclinical cannabinoid-based therapies and for the preliminary clinical testing that is currently underway.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cannabinoids and endocannabinoids.
Figure 2: General mechanisms of cannabinoid antitumour action.
Figure 3: Cannabinoid-induced apoptosis relies on the stimulation of ER stress and autophagy.
Figure 4: Possible strategies that aim to optimize cannabinoid-based therapies against gliomas.


  1. 1

    Gaoni, Y. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    CAS  Google Scholar 

  2. 2

    Pertwee, R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215 (2008).

    CAS  PubMed  Google Scholar 

  3. 3

    Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    CAS  PubMed  Google Scholar 

  4. 4

    Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  Google Scholar 

  5. 5

    Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  Google Scholar 

  6. 6

    Pertwee, R. G. et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev. 62, 588–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  PubMed  Google Scholar 

  8. 8

    Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  PubMed  Google Scholar 

  9. 9

    Fernandez-Ruiz, J. et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol. Sci. 28, 39–45 (2007).

    CAS  PubMed  Google Scholar 

  10. 10

    Atwood, B. K. & Mackie, K. CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160, 467–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Guzman, M. et al. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer 95, 197–203 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sarfaraz, S., Adhami, V. M., Syed, D. N., Afaq, F. & Mukhtar, H. Cannabinoids for cancer treatment: progress and promise. Cancer Res. 68, 339–342 (2008).

    CAS  PubMed  Google Scholar 

  13. 13

    Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Med. 14, 923–930 (2008).

    CAS  Google Scholar 

  14. 14

    Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Pertwee, R. G. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br. J. Pharmacol. 156, 397–411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Guzman, M. Cannabinoids: potential anticancer agents. Nature Rev. Cancer 3, 745–755 (2003).

    CAS  Google Scholar 

  17. 17

    Cudaback, E., Marrs, W., Moeller, T. & Stella, N. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS ONE 5, e8702 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Hart, S., Fischer, O. M. & Ullrich, A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 64, 1943–1950 (2004).

    CAS  PubMed  Google Scholar 

  19. 19

    McKallip, R. J., Nagarkatti, M. & Nagarkatti, P. S. Δ9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol. 174, 3281–3289 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Zhu, L. X. et al. Δ9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J. Immunol. 165, 373–380 (2000).

    CAS  PubMed  Google Scholar 

  21. 21

    Malfitano, A. M. et al. Update on the endocannabinoid system as an anticancer target. Expert Opin. Ther. Targets. 15, 297–308 (2011).

    CAS  PubMed  Google Scholar 

  22. 22

    Caffarel, M. M., Sarrio, D., Palacios, J., Guzman, M. & Sanchez, C. Δ9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 66, 6615–6621 (2006).

    CAS  PubMed  Google Scholar 

  23. 23

    Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res. 61, 5784–5789 (2001).

    CAS  Google Scholar 

  24. 24

    Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Thors, L. et al. Fatty acid amide hydrolase in prostate cancer: association with disease severity and outcome, CB1 receptor expression and regulation by IL-4. PLoS ONE 5, e12275 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Zheng, D. et al. The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development. Cancer Res. 68, 3992–3998 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Joosten, M. et al. Leukemic predisposition of pSca-1/Cb2 transgenic mice. Exp. Hematol. 30, 142–149 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Wang, D. et al. Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. Cancer Res. 68, 6468–6476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Izzo, A. A. et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J. Mol. Med. (Berl.) 86, 89–98 (2008).

    CAS  Google Scholar 

  30. 30

    Blazquez, C. et al. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res. 64, 5617–5623 (2004).

    CAS  PubMed  Google Scholar 

  31. 31

    Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med. 6, 313–319 (2000).

    CAS  Google Scholar 

  32. 32

    Gomez del Pulgar, T., Velasco, G., Sanchez, C., Haro, A. & Guzman, M. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem. J. 363, 183–188 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Carracedo, A. et al. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9, 301–312 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Encinar, J. A. et al. Human p8 is a HMG-I/Y-like protein with DNA binding activity enhanced by phosphorylation. J. Biol. Chem. 276, 2742–2751 (2001).

    CAS  PubMed  Google Scholar 

  35. 35

    Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Google Scholar 

  36. 36

    Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol. 2010, 930509 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Eisenberg-Lerner, A., Bialik, S., Simon, H. U. & Kimchi, A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16, 966–975 (2009).

    CAS  Google Scholar 

  39. 39

    Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Vara, D. et al. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ. 18, 1099–1111 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Carracedo, A. et al. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res. 66, 6748–6755 (2006).

    CAS  PubMed  Google Scholar 

  42. 42

    Blazquez, C. et al. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J. 20, 2633–2635 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Sarfaraz, S., Afaq, F., Adhami, V. M., Malik, A. & Mukhtar, H. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J. Biol. Chem. 281, 39480–39491 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    Guindon, J. & Hohmann, A. G. The endocannabinoid system and cancer: therapeutic implication. Br. J. Pharmacol. 163, 1447–1463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ligresti, A. et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther. 318, 1375–1387 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Massi, P. et al. 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. J. Neurochem. 104, 1091–1100 (2008).

    CAS  PubMed  Google Scholar 

  47. 47

    Shrivastava, A., Kuzontkoski, P. M., Groopman, J. E. & Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 10, 1161–1172 (2011).

    CAS  PubMed  Google Scholar 

  48. 48

    Massi, P. et al. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cel. Mol. Life Sci. 63, 2057–2066 (2006).

    CAS  Google Scholar 

  49. 49

    Casanova, M. L. et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest. 111, 43–50 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Blazquez, C. et al. Inhibition of tumor angiogenesis by cannabinoids. FASEB J. 17, 529–531 (2003).

    CAS  Google Scholar 

  51. 51

    Portella, G. et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 17, 1771–1773 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Pisanti, S. et al. Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. J. Cell Physiol. 211, 495–503 (2007).

    CAS  PubMed  Google Scholar 

  53. 53

    Blazquez, C. et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res. 68, 1945–1952 (2008).

    CAS  Google Scholar 

  54. 54

    Grimaldi, C. et al. Anandamide inhibits adhesion and migration of breast cancer cells. Exp. Cell Res. 312, 363–373 (2006).

    CAS  PubMed  Google Scholar 

  55. 55

    Qamri, Z. et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol. Cancer Ther. 8, 3117–3129 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Preet, A., Ganju, R. K. & Groopman, J. E. Δ9-tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene 27, 339–346 (2008).

    CAS  PubMed  Google Scholar 

  57. 57

    Ramer, R. & Hinz, B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst. 100, 59–69 (2008).

    CAS  PubMed  Google Scholar 

  58. 58

    McAllister, S. D., Christian, R. T., Horowitz, M. P., Garcia, A. & Desprez, P. Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 6, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    McAllister, S. D. et al. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res. Treat. 129, 37–47 (2011).

    CAS  PubMed  Google Scholar 

  60. 60

    Galve-Roperh, I., Aguado, T., Palazuelos, J. & Guzman, M. Mechanisms of control of neuron survival by the endocannabinoid system. Curr. Pharm. Des. 14, 2279–2288 (2008).

    CAS  PubMed  Google Scholar 

  61. 61

    Chan, P. C., Sills, R. C., Braun, A. G., Haseman, J. K. & Bucher, J. R. Toxicity and carcinogenicity of Δ9-tetrahydrocannabinol in Fischer rats and B6C3F1 mice. Fundam. Appl. Toxicol. 30, 109–117 (1996).

    CAS  PubMed  Google Scholar 

  62. 62

    Lombard, C., Nagarkatti, M. & Nagarkatti, P. CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin. Immunol. 122, 259–270 (2007).

    CAS  PubMed  Google Scholar 

  63. 63

    Rieder, S. A., Chauhan, A., Singh, U., Nagarkatti, M. & Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215, 598–605 (2010).

    CAS  PubMed  Google Scholar 

  64. 64

    Lorente, M. et al. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ. 18, 959–973 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Newton, C. A., Chou, P. J., Perkins, I. & Klein, T. W. CB1 and CB2 cannabinoid receptors mediate different aspects of Δ9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol. 4, 92–102 (2009).

    PubMed  Google Scholar 

  66. 66

    Lu, T., Newton, C., Perkins, I., Friedman, H. & Klein, T. W. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J. Pharmacol. Exp. Ther. 319, 269–276 (2006).

    CAS  PubMed  Google Scholar 

  67. 67

    Steffens, S. et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434, 782–786 (2005).

    CAS  PubMed  Google Scholar 

  68. 68

    Hegde, V. L., Nagarkatti, M. & Nagarkatti, P. S. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur. J. Immunol. 40, 3358–3371 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Burstein, S. H. & Zurier, R. B. Cannabinoids, endocannabinoids, and related analogs in inflammation. AAPS J. 11, 109–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Liu, W. M., Fowler, D. W. & Dalgleish, A. G. Cannabis-derived substances in cancer therapy--an emerging anti-inflammatory role for the cannabinoids. Curr. Clin. Pharmacol. 5, 281–287 (2010).

    CAS  PubMed  Google Scholar 

  71. 71

    Hudson, B. D., Hebert, T. E. & Kelly, M. E. Ligand- and heterodimer-directed signaling of the CB1 cannabinoid receptor. Mol. Pharmacol. 77, 1–9 (2010).

    CAS  Google Scholar 

  72. 72

    Dainese, E., Oddi, S. & Maccarrone, M. Interaction of endocannabinoid receptors with biological membranes. Curr. Med. Chem. 17, 1487–1499 (2010).

    CAS  PubMed  Google Scholar 

  73. 73

    Smith, T. H., Sim-Selley, L. J. & Selley, D. E. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br. J. Pharmacol. 160, 454–466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Mirkin, B. L. et al. Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene 24, 4965–4974 (2005).

    CAS  PubMed  Google Scholar 

  75. 75

    Kadomatsu, K. The midkine family in cancer, inflammation and neural development. Nagoya J. Med. Sci. 67, 71–82 (2005).

    CAS  PubMed  Google Scholar 

  76. 76

    Palmer, R. H., Vernersson, E., Grabbe, C. & Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J. 420, 345–361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    de Bono, J. S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    CAS  Google Scholar 

  78. 78

    Grande, E., Bolos, M. V. & Arriola, E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol. Cancer Ther. 10, 569–579 (2011).

    CAS  PubMed  Google Scholar 

  79. 79

    Lorente, M. et al. Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis. Glia 57, 1374–1385 (2009).

    PubMed  Google Scholar 

  80. 80

    Torres, S. et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 10, 90–103 (2011).

    CAS  Google Scholar 

  81. 81

    Donadelli, M. et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2, e152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Miyato, H. et al. Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. J. Surg. Res. 155, 40–47 (2009).

    CAS  PubMed  Google Scholar 

  83. 83

    Gustafsson, S. B., Lindgren, T., Jonsson, M. & Jacobsson, S. O. Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother. Pharmacol. 63, 691–701 (2009).

    CAS  PubMed  Google Scholar 

  84. 84

    Marcu, J. P. et al. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther. 9, 180–189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J. 15, 2745–2747 (2001).

    CAS  PubMed  Google Scholar 

  86. 86

    Herrera, B. et al. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp. Cell Res. 312, 2121–2131 (2006).

    CAS  PubMed  Google Scholar 

  87. 87

    Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577 (2003).

    CAS  Google Scholar 

  88. 88

    Ellert-Miklaszewska, A., Kaminska, B. & Konarska, L. Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal. 17, 25–37 (2005).

    CAS  PubMed  Google Scholar 

  89. 89

    Caffarel, M. M. et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene 27, 5033–5044 (2008).

    CAS  PubMed  Google Scholar 

  90. 90

    Lonardi, S., Tosoni, A. & Brandes, A. A. Adjuvant chemotherapy in the treatment of high grade gliomas. Cancer Treat. Rev. 31, 79–89 (2005).

    CAS  PubMed  Google Scholar 

  91. 91

    Nieder, C., Adam, M., Molls, M. & Grosu, A. L. Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit. Rev. Oncol. Hematol. 60, 181–193 (2006).

    PubMed  Google Scholar 

  92. 92

    Purow, B. & Schiff, D. Advances in the genetics of glioblastoma: are we reaching critical mass? Nature Rev. Neurol. 5, 419–426 (2009).

    CAS  Google Scholar 

  93. 93

    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Caffarel, M. M. et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol. Cancer 9, 196 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Oesch, S. et al. Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Mol. Cancer Ther. 8, 1838–1845 (2009).

    CAS  PubMed  Google Scholar 

  96. 96

    Gustafsson, K., Christensson, B., Sander, B. & Flygare, J. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol. Pharmacol. 70, 1612–1620 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    McKallip, R. J. et al. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood 100, 627–634 (2002).

    CAS  PubMed  Google Scholar 

  98. 98

    Jia, W. et al. Δ9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Mol. Cancer Res. 4, 549–562 (2006).

    CAS  PubMed  Google Scholar 

  99. 99

    Mimeault, M., Pommery, N., Wattez, N., Bailly, C. & Henichart, J. P. Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. Prostate 56, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  100. 100

    Olea-Herrero, N., Vara, D., Malagarie-Cazenave, S. & Diaz-Laviada, I. Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2 . Br. J. Cancer 101, 940–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by grants from the Spanish Ministry of Science and Innovation (MICINN) (PS09/01401, FR2009-0052 and IT2009-0053 to G.V.; and PI11/00295 to C.S.), Comunidad de Madrid (S2011/BMD-2308 and 950344 to M.G.), GW Pharmaceuticals (to G.V., C.S. and M.G.) and Schering-Plough (to G.V.).

Author information



Corresponding author

Correspondence to Guillermo Velasco.

Ethics declarations

Competing interests

G.V., C.S. and M.G. declare that GW Pharmaceuticals and Schering-Plough funded part of the research of their laboratory. Likewise, part of the data obtained by the authors in relation to the antitumour action of cannabinoids is included in three patent applications presented by GW Pharmaceuticals.

Supplementary information

Supplementary Table S1

Cannabinoid activity in animal models of cancer (PDF 213 kb)

Related links

Related links


Cannabinoid Signalling Group

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velasco, G., Sánchez, C. & Guzmán, M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 12, 436–444 (2012).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing