Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer stem cells: an evolving concept

Abstract

The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Xenograft assays to measure human CSCs.
Figure 2: Prospective purification of CSCs.

References

  1. Hooke, R. Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon, (J. Martyn and J. Allestry, London, 1665).

    Google Scholar 

  2. Blackburn, E. H. et al. AACR Cancer Progress Report 2011. (American Association for Cancer Research, 2011).

    Google Scholar 

  3. Chao, M. P., Seita, J. & Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb. Symp. Quant. Biol. 73, 439–449 (2008).

    CAS  PubMed  Article  Google Scholar 

  4. Dinsmore, C. E. Animal regeneration: from fact to concept. Bioscience 45, 484–492 (1995).

    Article  Google Scholar 

  5. Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T. & Weissman, I. L. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476, 409–413 (2011).

    CAS  PubMed  Article  Google Scholar 

  6. Sun, T. T. & Green, H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell 9, 511–521 (1976).

    CAS  PubMed  Article  Google Scholar 

  7. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Pellegrini, G. et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J. Cell Biol. 145, 769–782 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Rama, P. et al. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 363, 147–155 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    CAS  PubMed  Article  Google Scholar 

  12. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 97, 14720–14725 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Sun, Y. et al. CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE 4, e5498 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    CAS  PubMed  Article  Google Scholar 

  15. Eirew, P. et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Med. 14, 1384–1389 (2008).

    CAS  PubMed  Article  Google Scholar 

  16. Visvader, J. E. & Smith, G. H. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb. Perspect. Biol. 3, a004879 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Schultz, E. & McCormick, K. M. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123, 213–257 (1994).

    CAS  PubMed  Article  Google Scholar 

  18. Shadrach, J. L. & Wagers, A. J. Stem cells for skeletal muscle repair. Philos. Trans. R. Soc. B. 366, 2297–2306 (2011).

    CAS  Article  Google Scholar 

  19. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  Article  PubMed  Google Scholar 

  20. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nature Med. 17, 1225–1227 (2011).

    CAS  Article  PubMed  Google Scholar 

  21. Kim, C. F. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1092–L1098 (2007).

    CAS  PubMed  Article  Google Scholar 

  22. Rock, J. R. & Hogan, B. L. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu. Rev. Cell Dev. Biol. 27, 493–512 (2011).

    CAS  PubMed  Article  Google Scholar 

  23. Xin, L., Ide, H., Kim, Y., Dubey, P. & Witte, O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc. Natl Acad. Sci. USA 100, 11896–11903 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Huss, W. J., Gray, D. R., Werdin, E. S., Funkhouser, W. K. Jr & Smith, G. J. Evidence of pluripotent human prostate stem cells in a human prostate primary xenograft model. Prostate 60, 77–90 (2004).

    PubMed  Article  Google Scholar 

  25. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell. Nature 456, 804–808 (2008).

    CAS  PubMed  Article  Google Scholar 

  26. Iglesias-Bartolome, R. & Gutkind, J. S. Signaling circuitries controlling stem cell fate: to be or not to be. Curr. Opin. Cell Biol. 23, 716–723 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. He, S., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).

    CAS  PubMed  Article  Google Scholar 

  28. Becker, A. J., McCulloch, E. A., Siminovitch, L. & Till, J. E. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 26, 296–308 (1965).

    CAS  PubMed  Article  Google Scholar 

  29. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T. & Lavker, R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57, 201–209 (1989).

    CAS  Article  PubMed  Google Scholar 

  30. Morshead, C. M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    CAS  PubMed  Article  Google Scholar 

  31. Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

    CAS  PubMed  Article  Google Scholar 

  32. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Lessard, J., Faubert, A. & Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23, 7199–7209 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    CAS  PubMed  Article  Google Scholar 

  36. Kamiya, A., Kakinuma, S., Yamazaki, Y. & Nakauchi, H. Enrichment and clonal culture of progenitor cells during mouse postnatal liver development in mice. Gastroenterology 137, 1114–1126 (2009).

    CAS  PubMed  Article  Google Scholar 

  37. He, S., Kim, I., Lim, M. S. & Morrison, S. J. Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev. 25, 1613–1627 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Lepper, C., Conway, S. J. & Fan, C. M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460, 627–631 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Askanazy, M. Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl. Deutsch. Pathol. 11, 39–82 (1907).

    Google Scholar 

  41. Jackson, E. B. & Brues, A. M. Studies on a transplantable embryoma of the mouse. Cancer Res. 1, 494–498 (1941).

    CAS  Google Scholar 

  42. Pierce, G. B. Jr, Dixon, F. J. Jr & Verney, E. L. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab. Invest. 9, 583–602 (1960).

    PubMed  Google Scholar 

  43. Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    CAS  PubMed  Article  Google Scholar 

  44. Kleinsmith, L. J. & Pierce, G. B. Jr . Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  45. Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996–2004 (1988).

    CAS  PubMed  Google Scholar 

  46. Pierce, G. B. & Wallace, C. Differentiation of malignant to benign cells. Cancer Res. 31, 127–134 (1971).

    CAS  PubMed  Google Scholar 

  47. Eisenhardt, L. & Cushing, H. Diagnosis of intracranial tumors by supravital technique. Am. J. Path 6, 541–552.7 (1930).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kunschner, L. J. Harvey Cushing and medulloblastoma. Arch. Neurol. 59, 642–645 (2002).

    PubMed  Article  Google Scholar 

  49. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Dameshek, W. Some speculations on the myeloproliferative syndromes. Blood 6, 372–375 (1951).

    CAS  PubMed  Article  Google Scholar 

  51. Barnes, D. W. H. & Loutit, J. F. in International Conference on Peaceful Uses of Atomic Energy 348–350 (United Nations, Geneva, 1955).

    Google Scholar 

  52. Barnes, D. W. H., Ford, C. E., Gray, S. M. & Loutit, J. F. Spontaneous and induced changes in cell populations in heavily irradiated mice. Progr. Nucl. Energy Biol. Sci. 2, 1–10 (1959).

    CAS  Google Scholar 

  53. Nowell, P. C. & Hungerford, D. A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  54. Whang, J., Frei, E., Tjio, J. H., Carbone, P. P. & Brecher, G. The distribution of the philadelphia chromosome in patients with chronic myelogenous leukemia. Blood 22, 664–673 (1963).

    CAS  PubMed  Article  Google Scholar 

  55. Tough, I. M., Jacobs, P. A., Court Brown, W. M., Baikie, A. G. & Williamson, E. R. Cytogenetic studies on bone-marrow in chronic myeloid leukaemia. Lancet 1, 844–846 (1963).

    CAS  PubMed  Article  Google Scholar 

  56. Levin, R. H. et al. Persistent mitosis of transfused homologous leukocytes in children receiving antileukemic therapy. Science 142, 1305–1311 (1963).

    CAS  PubMed  Article  Google Scholar 

  57. Fialkow, P. J., Gartler, S. M. & Yoshida, A. Clonal origin of chronic myelocytic leukemia in man. Proc. Natl Acad. Sci. USA 58, 1468–1471 (1967).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Greaves, M. F. et al. “Pre-B” phenotypes in blast crisis of Ph1 positive CML: evidence for a pluripotential stem cell “target”. Leuk. Res. 3, 181–191 (1979).

    CAS  PubMed  Article  Google Scholar 

  59. Martin, P. J. et al. Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature 287, 49–50 (1980).

    CAS  PubMed  Article  Google Scholar 

  60. Eaves, C. J. & Eaves, A. C. Cell culture studies in CML. Baillieère's Clin. Haematol. 1, 931–961 (1987).

    CAS  Article  Google Scholar 

  61. Holyoake, T. L., Jiang, X., Drummond, M. W., Eaves, A. C. & Eaves, C. J. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 16, 549–558 (2002).

    CAS  PubMed  Article  Google Scholar 

  62. Sloma, I., Jiang, X., Eaves, A. C. & Eaves, C. J. Insights into the stem cells of chronic myeloid leukemia. Leukemia 24, 1823–1833 (2010).

    CAS  PubMed  Article  Google Scholar 

  63. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    CAS  PubMed  Article  Google Scholar 

  64. Li, S., Ilaria, R. L. Jr, Million, R. P., Daley, G. Q. & Van Etten, R. A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105, 324–334 (2005).

    CAS  PubMed  Article  Google Scholar 

  66. Chomel, J. C. et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 118, 3657–3660 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Chu, S. et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Cortes, J., O'Brien, S. & Kantarjian, H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 104, 2204–2205 (2004).

    CAS  Article  PubMed  Google Scholar 

  69. Levan, A., Nichols, W. W. & Norden, A. A case of chronic myeloid leukemia with two leukemic stemlines in the blood. Hereditas 49, 434–441 (1963).

    Google Scholar 

  70. Calabretta, B. & Perrotti, D. The biology of CML blast crisis. Blood 103, 4010–4022 (2004).

    CAS  Article  PubMed  Google Scholar 

  71. Jiang, X., Saw, K. M., Eaves, A. & Eaves, C. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J. Natl Cancer Inst. 99, 680–693 (2007).

    CAS  Article  PubMed  Google Scholar 

  72. Bumm, T. et al. Clonal chromosomal abnormalities in CD34+/CD38 hematopoietic cells from cytogenetically normal chronic myeloid leukemia patients with a complete cytogenetic response to tyrosine kinase inhibitors. Leukemia 24, 1525–1528 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Stich, H. F. & Emson, H. E. Aneuploid deoxyribonucleic acid content of human carcinomas. Nature 184, 290–291 (1959).

    CAS  PubMed  Article  Google Scholar 

  74. Stich, H. F. & Steele, H. D. DNA content of tumor cells. III. Mosaic composition of sarcomas and carcinomas in man. J. Natl Cancer Inst. 28, 1207–1218 (1962).

    CAS  PubMed  Google Scholar 

  75. Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).

    CAS  PubMed  Article  Google Scholar 

  76. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  Article  PubMed  Google Scholar 

  77. Furth, J. & Kahn, M. The transmission of leukemia of mice with a single cell. Am. J. Cancer 31, 276–282 (1937).

    Google Scholar 

  78. Niederwieser, D. W. et al. Inadvertent transmission of a donor's acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia. N. Engl. J. Med. 322, 1794–1796 (1990).

    CAS  PubMed  Article  Google Scholar 

  79. Hewitt, H. B. & Wilson, C. W. A survival curve for mammalian leukaemia cells irradiated in vivo (implications for the treatment of mouse leukaemia by whole-body irradiation). Br. J. Cancer 13, 69–75 (1959).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Bruce, W. R. & Van Der Gaag, H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963).

    CAS  PubMed  Article  Google Scholar 

  81. Shultz, L. D. & Sidman, C. L. Genetically determined murine models of immunodeficiency. Annu. Rev. Immunol. 5, 367–403 (1987).

    CAS  PubMed  Article  Google Scholar 

  82. Kamel-Reid, S. et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 246, 1597–1600 (1989).

    CAS  PubMed  Article  Google Scholar 

  83. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    CAS  PubMed  Article  Google Scholar 

  84. Sirard, C. et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87, 1539–1548 (1996).

    CAS  PubMed  Article  Google Scholar 

  85. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  Article  PubMed  Google Scholar 

  87. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    CAS  Article  PubMed  Google Scholar 

  88. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    CAS  PubMed  Article  Google Scholar 

  90. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133–137 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Ishizawa, K. et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7, 279–282 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Maitland, N. J., Frame, F. M., Polson, E. S., Lewis, J. L. & Collins, A. T. Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm. Cancer 2, 47–61 (2011).

    PubMed  Article  Google Scholar 

  95. Stewart, J. M. et al. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl Acad. Sci. USA 108, 6468–6473 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. Miyauchi, J. et al. The effects of three recombinant growth factors, IL-3, GM-CSF, and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short-term suspension culture. Blood 70, 657–663 (1987).

    CAS  PubMed  Article  Google Scholar 

  97. Wunderlich, M. et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785–1788 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nature Rev. Mol. Cell Biol. 4, 915–925 (2003).

    CAS  Article  Google Scholar 

  99. Fulop, G. M. & Phillips, R. A. The scid mutation in mice causes a general defect in DNA repair. Nature 347, 479–482 (1990).

    CAS  PubMed  Article  Google Scholar 

  100. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14, 518–527 (2008).

    CAS  Article  PubMed  Google Scholar 

  101. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Steidl, C. & Gascoyne, R. D. The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood 118, 2659–2669 (2011).

    CAS  PubMed  Article  Google Scholar 

  104. Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011).

    CAS  PubMed  Article  Google Scholar 

  105. Cieciura, S. J., Marcus, P. I. & Puck, T. T. Clonal growth in vitro of epithelial cells from normal human tissues. J. Exp. Med. 104, 615–628 (1956).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Paran, M., Sachs, L., Barak, Y. & Resnitzky, P. In vitro induction of granulocyte differentiation in hematopoietic cells from leukemic and non-leukemic patients. Proc. Natl Acad. Sci. USA 67, 1542–1549 (1970).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. Metcalf, D. & Moore, M. A. Growth and responsiveness of human granulocytic leukemic cells in vitro. Bibl. Haematol. 1975, 235–241 (1975).

    Google Scholar 

  108. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    CAS  PubMed  Article  Google Scholar 

  109. Ignatova, T. N. et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206 (2002).

    PubMed  Article  Google Scholar 

  110. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  112. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    CAS  Article  PubMed  Google Scholar 

  113. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    CAS  PubMed  Article  Google Scholar 

  114. Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005).

    CAS  PubMed  Article  Google Scholar 

  115. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    CAS  PubMed  Article  Google Scholar 

  116. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    CAS  PubMed  Article  Google Scholar 

  117. Taussig, D. C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112, 568–575 (2008).

    CAS  PubMed  Article  Google Scholar 

  118. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    CAS  Article  PubMed  Google Scholar 

  119. Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    CAS  Article  PubMed  Google Scholar 

  120. Bakhshi, A. et al. Lymphoid blast crises of chronic myelogenous leukemia represent stages in the development of B-cell precursors. N. Engl. J. Med. 309, 826–831 (1983).

    CAS  PubMed  Article  Google Scholar 

  121. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    CAS  PubMed  Article  Google Scholar 

  122. Mrozek, K., Radmacher, M. D., Bloomfield, C. D. & Marcucci, G. Molecular signatures in acute myeloid leukemia. Curr. Opin. Hematol. 16, 64–69 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    CAS  PubMed  Article  Google Scholar 

  124. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Med. 17, 1086–1093 (2011).

    CAS  PubMed  Article  Google Scholar 

  125. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    CAS  PubMed  Article  Google Scholar 

  126. Heuser, M. et al. Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell 20, 39–52 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Gootwine, E., Webb, C. G. & Sachs, L. Participation of myeloid leukaemic cells injected into embryos in haematopoietic differentiation in adult mice. Nature 299, 63–65 (1982).

    CAS  PubMed  Article  Google Scholar 

  129. Fearon, E. R., Burke, P. J., Schiffer, C. A., Zehnbauer, B. A. & Vogelstein, B. Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N. Engl. J. Med. 315, 15–24 (1986).

    CAS  PubMed  Article  Google Scholar 

  130. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  Article  PubMed  Google Scholar 

  131. Sanz, M. A. & Lo-Coco, F. Modern approaches to treating acute promyelocytic leukemia. J. Clin. Oncol. 29, 495–503 (2011).

    PubMed  Article  Google Scholar 

  132. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. Iliopoulos, D., Hirsch, H. A., Wang, G. & Struhl, K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl Acad. Sci. USA 108, 1397–1402 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  Article  PubMed  Google Scholar 

  136. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol. 12, 468–476 (2010).

    CAS  PubMed  Article  Google Scholar 

  137. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    CAS  PubMed  Article  Google Scholar 

  138. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    CAS  PubMed  Article  Google Scholar 

  139. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Article  PubMed  Google Scholar 

  140. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  PubMed  Google Scholar 

  141. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  Article  PubMed  Google Scholar 

  142. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    CAS  PubMed  Article  Google Scholar 

  143. Okita, K. & Yamanaka, S. Induced pluripotent stem cells: opportunities and challenges. Philos. Trans. R Soc. B 366, 2198–2207 (2011).

    CAS  Article  Google Scholar 

  144. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    CAS  PubMed  Article  Google Scholar 

  145. Ross, D. M., Hughes, T. P. & Melo, J. V. Do we have to kill the last CML cell? Leukemia 25, 193–200 (2011).

    CAS  PubMed  Article  Google Scholar 

  146. Takebe, N., Harris, P. J., Warren, R. Q. & Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Rev. Clin. Oncol. 8, 97–106 (2011).

    CAS  Article  Google Scholar 

  147. Becker, A. J., McCulloch, E. A. & Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).

    CAS  PubMed  Article  Google Scholar 

  148. Pluznik, D. H. & Sachs, L. The cloning of normal “mast” cells in tissue culture. J. Cell. Physiol. 66, 319–324 (1965).

    CAS  PubMed  Article  Google Scholar 

  149. Bradley, T. R. & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287–299 (1966).

    CAS  PubMed  Article  Google Scholar 

  150. Senn, J. S. & McCulloch, E. A. Radiation sensitivity of human bone marrow cells measured by a cell culture method. Blood 35, 56–60 (1970).

    CAS  PubMed  Article  Google Scholar 

  151. Stephenson, J. R., Axelrad, A. A., McLeod, D. L. & Shreeve, M. M. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl Acad. Sci. USA 68, 1542–1546 (1971).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. McLeod, D. L., Shreeve, M. M. & Axelrad, A. A. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood 44, 517–534 (1974).

    CAS  PubMed  Article  Google Scholar 

  153. Gregory, C. J. & Eaves, A. C. Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49, 855–864 (1977).

    CAS  PubMed  Article  Google Scholar 

  154. Johnson, G. R. & Metcalf, D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc. Natl Acad. Sci. USA 74, 3879–3882 (1977).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. Fauser, A. A. & Messner, H. A. Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood 52, 1243–1248 (1978).

    CAS  PubMed  Article  Google Scholar 

  156. Humphries, R. K., Eaves, A. C. & Eaves, C. J. Characterization of a primitive erythropoietic progenitor found in mouse marrow before and after several weeks in culture. Blood 53, 746–763 (1979).

    CAS  PubMed  Article  Google Scholar 

  157. Ploemacher, R. E., van der Sluijs, J. P., Voerman, J. S. & Brons, N. H. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74, 2755–2763 (1989).

    CAS  PubMed  Article  Google Scholar 

  158. Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C. & Eaves, C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl Acad. Sci. USA 87, 3584–3588 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. Szilvassy, S. J. et al. Retrovirus-mediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopoietic repopulating ability. Proc. Natl Acad. Sci. USA 86, 8798–8802 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    CAS  PubMed  Article  Google Scholar 

  161. Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. Kent, D. G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    CAS  PubMed  Article  Google Scholar 

  163. Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D. & Dick, J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl Acad. Sci. USA 94, 5320–5325 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. Conneally, E., Cashman, J., Petzer, A. & Eaves, C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl Acad. Sci. USA 94, 9836–9841 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011).

    CAS  PubMed  Article  Google Scholar 

  166. Joseph, N. M. et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13, 129–140 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Liu, C. et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146, 209–221 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Wang, Y. et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15, 514–526 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. Alcantara Llaguno, S. et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15, 45–56 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  172. Pierce, G. B. & Dixon, F. J. Jr . Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12, 573–583 (1959).

    CAS  PubMed  Article  Google Scholar 

  173. McCulloch, E. A. & Till, J. E. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res. 13, 115–125 (1960).

    CAS  PubMed  Article  Google Scholar 

  174. Worton, R. G., McCulloch, E. A. & Till, J. E. Physical separation of hemopoietic stem cells from cells forming colonies in culture. J. Cell. Physiol. 74, 171–182 (1969).

    CAS  PubMed  Article  Google Scholar 

  175. Clarkson, B. et al. Studies of cellular proliferation in human leukemia. 3. Behavior of leukemic cells in three adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer 25, 1237–1260 (1970).

    CAS  PubMed  Article  Google Scholar 

  176. Gregory, C. J. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J. Cell. Physiol. 89, 289–301 (1976).

    CAS  PubMed  Article  Google Scholar 

  177. Humphries, R. K., Eaves, A. C. & Eaves, C. J. Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc. Natl Acad. Sci. USA 78, 3629–3633 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. Civin, C. I. et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 133, 157–165 (1984).

    CAS  PubMed  Google Scholar 

  179. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    CAS  PubMed  Article  Google Scholar 

  180. Lansdorp, P. M. & Dragowska, W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J. Exp. Med. 175, 1501–1509 (1992).

    CAS  PubMed  Article  Google Scholar 

  181. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    CAS  PubMed  Article  Google Scholar 

  182. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  Article  PubMed  Google Scholar 

  183. Castor, A. et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Med. 11, 630–637 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research support from the British Columbia Cancer Foundation, the Canadian Breast Cancer Research Alliance, the Canadian Cancer Society, the Canadian Institutes of Health Research (CIHR), the Canadian Stem Cell Network, the Ontario Institute of Cancer Research and the Terry Fox Foundation. L.V.N. and R.V. are both recipients of Vanier Canada Graduate Scholarships from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie J. Eaves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, L., Vanner, R., Dirks, P. et al. Cancer stem cells: an evolving concept. Nat Rev Cancer 12, 133–143 (2012). https://doi.org/10.1038/nrc3184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3184

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer