Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Novel cancer immunotherapy agents with survival benefit: recent successes and next steps

Abstract

The US Food and Drug Administration (FDA) recently approved two novel immunotherapy agents, sipuleucel-T and ipilimumab, which showed a survival benefit for patients with metastatic prostate cancer and melanoma, respectively. The mechanisms by which these agents provideclinical benefit are not completely understood. However, knowledge of these mechanisms will be crucial for probing human immune responses and tumour biology in order to understand what distinguishes responders from non-responders. The following next steps are necessary: first, the development of immune-monitoring strategies for the identification of relevant biomarkers; second, the establishment of guidelines for the assessment of clinical end points; and third, the evaluation of combination therapy strategies to improve clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic mechanisms of T cell stimulation and inhibition.
Figure 2: Current therapies that induce effector T cell functions.
Figure 3: Clinical trial concepts.

Similar content being viewed by others

References

  1. Burnet, F. M. Immunological aspects of malignant disease. Lancet 1, 1171–1174 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med. 55, 329–333 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaplan, D. H. et al. Demonstration of an interferon-γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lasaro, M. O. & Ertl, H. C. Targeting inhibitory pathways in cancer immunotherapy. Curr. Opin. Immunol. 22, 385–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schreibelt, G. et al. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol. Immunother. 59, 1573–1582 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Speiser, D. E. & Romero, P. Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity. Semin. Immunol. 22, 144–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kershaw, M. H. et al. A phase I study of adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwartzentruber, D. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a proxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic lymphocyte-associated antigen 4 (CTLA4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quezada, S. A. et al. CTLA4-blockade and GMCSF combination immunotherapy alters the intra-tumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirkwood, J. M. et al. Phase II trial of tremelimumab (CP675206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 16, 1042–1048 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Camacho, L. H. et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 27, 1075–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Ribas, A. Clinical development of the anti-CTLA4 antibody tremelimumab. Semin. Oncol. 37, 450–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Marshall, M. A., Ribas, A. & Huang, B. Evaluation of baseline serum C-reactive protein (CRP) and benefit from tremelimumab compared to chemotherapy in first-line melanoma. J. Clin. Oncol. 28 (Suppl.), Abstract 2609 (2010).

    Article  Google Scholar 

  27. Liakou, C. I. et al. CTLA4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H. et al. Anti-CTLA4 therapy results in higher CD4+ICOShi T cell frequency and IFN-γ levels in both nonmalignant and malignant prostate tissues. Proc. Natl Acad. Sci. USA 106, 2729–2734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carthon, B. C. et al. Preoperative CTLA4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16, 2861–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vonderheide, R. H. et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 16, 3485–3494 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, J. et al. CTLA4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA 105, 20410–20415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peggs, K. S., Quezada, S. A., Sharma, P. & Allison, J. P. Cancer immunotherapy. In Cancer Medicine 8th edn 175–189 (People's Medical Publishing House, Shelton, Connecticut, 2010).

    Google Scholar 

  33. Wolchok, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Salgaller, M., Marincola, F., Cormier, J. & Rosenberg, S. Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res. 56, 4749–4757 (1996).

    CAS  PubMed  Google Scholar 

  35. Korn, E. L. et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J. Clin. Oncol. 26, 527–534 (2008).

    Article  PubMed  Google Scholar 

  36. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Sznol, M. et al. Safety and antitumor activity of biweekly MDX1106 (Anti-PD1, BMS936558/ONO4538) in patients with advanced refractory malignancies. J. Clin. Oncol. 28 (Suppl.), Abstract 2506 (2010).

    Article  Google Scholar 

  38. Saenger, Y. M. & Wolchok, J. D. The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun. 8, 1 (2008).

    PubMed  PubMed Central  Google Scholar 

  39. O'Day, S. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21, 1712–1717 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kane, R. C. et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res. 12, 7271–7278 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Spira, D. et al. Comparison of different tumor response criteria in patients with hepatocellular carcinoma after systemic therapy with the multikinase inhibitor sorafenib. Acad. Radiol. 18, 89–96 (2010).

    Article  PubMed  Google Scholar 

  43. Suzuki, C. et al. Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics 28, 329–344 (2008).

    Article  PubMed  Google Scholar 

  44. Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Haining, W. N. & Wherry, E. J. Integrating genomic signatures for immunologic discovery. Immunity 32, 152–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kirkwood, J. M. et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine +/− granulocyte-monocyte colony-stimulating factor and/or IFNα2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res. 15, 1443–1451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Slingluff, C. L. et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin. Cancer Res. 13, 6386–6395 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Britten, C. M., Janetzki, S., van der Burg, S. H., Gouttefangeas, C. & Hoos, A. Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol. Immunother. 57, 285–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Janetzki, S. et al. “MIATA”-minimal information about T cell assays. Immunity 31, 527–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janetzki, S., Cox, J. H., Oden, N. & Ferrari, G. Standardization and validation issues of the ELISPOT assay. Methods Mol. Biol. 302, 51–86 (2005).

    CAS  PubMed  Google Scholar 

  51. Janetzki, S. et al. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol. Immunother. 57, 303–315 (2008).

    Article  PubMed  Google Scholar 

  52. Moodie, Z. et al. Response definition criteria for ELISPOT assays revisited. Cancer Immunol. Immunother. 59, 1489–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koup, R. A, Graham, B. S. & Douek, D. C. The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nature Rev. Immunol. 11, 65–70 (2011).

    Article  CAS  Google Scholar 

  54. Dunn, G. P., Sheehan, K. C., Old, L. J. & Schreiber, R. D. IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res. 65, 3447–3453 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Dancey, J. E. et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin. Cancer Res. 16, 1745–1755 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  PubMed  Google Scholar 

  57. Segal, N. H. Epitope landscape in breast and colorectal cancer. Cancer Res. 68, 889–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Peggs, K. S., Segal, N. H. & Allison, J. P. Targeting immunosupportive cancer therapies: accentuate the positive, eliminate the negative. Cancer Cell 12, 192–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hodi, F. S. et al. A phase I trial of ipilimumab plus bevacizumab in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol. 29 (Suppl.), Abstract 8511 (2011).

    Article  Google Scholar 

  60. Ngiow, S. et al. Anti-TIM3 antibody promotes T cell IFNγ-mediated antitumor immunity and suppresses established tumors. Cancer Res. 71, 3540–3551 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research work was supported by the Howard Hughes Medical Institute (for J.P.A.), the Ludwig Center for Cancer Immunotherapy (for P.S., J.D.W. and J.P.A.), a Prostate Cancer Foundation Challenge Award in Immunology (to P.S. and J.P.A.). P.S. also acknowledges support from an M. D. Anderson Cancer Center Physician Scientist Award, a Doris Duke Charitable Foundation Clinical Scientist Development Award, a Clinical Investigator Award from the Cancer Research Institute, a Melanoma Research Alliance Young Investigator Award, an American Cancer Society Mentored Research Scholar Grant and a US Department of Defense Prostate Cancer Idea Development Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Padmanee Sharma or James P. Allison.

Ethics declarations

Competing interests

P.S., J.D.W. and J.P.A. have all served as paid consultants for Bristol-Myers Squibb (BMS). P.S. has also served as a paid consultant for Dendreon, Inc. J.P.A. is the inventor of anti-CTLA4 and has family members who own stock in BMS. K.W. is currently employed by Genentech.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Wagner, K., Wolchok, J. et al. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11, 805–812 (2011). https://doi.org/10.1038/nrc3153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing