Parkinson's disease and cancer: two wars, one front

Abstract

Parkinson's disease is caused by the premature death of neurons in the midbrain. By contrast, cancer spawns from cells that refuse to die. We would therefore expect their pathogenic mechanisms to be very different. However, recent genetic studies and emerging functional work show that strikingly similar and overlapping pathways are involved in both diseases. We consider these areas of convergence and discuss how insights from one disease can inform us about, and possibly help us to treat, the other.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The complexity of overlapping pathways in Parkinson's disease and cancer.
Figure 2: Protein handling in Parkinson's disease and cancer.

References

  1. 1

    Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr. 79, 368–376 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Doshay, L. J. Problem situations in the treatment of paralysis agitans. J. Am. Med. Assoc. 156, 680–684 (1954).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Braak, H. & Braak, E. Pathoanatomy of Parkinson's disease. J. Neurol. 247 (Suppl. 2), II3–10 (2000).

    PubMed  Google Scholar 

  6. 6

    Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nature Genet. 41, 1303–1307 (2009).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genet. 41, 1308–1312 (2009).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Hardy, J. Genetic analysis of pathways to Parkinson disease. Neuron 68, 201–206 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Schulz, J. B. & Falkenburger, B. H. Neuronal pathology in Parkinson's disease. Cell Tissue Res. 318, 135–147 (2004).

    PubMed  Article  Google Scholar 

  13. 13

    McNaught, K. S., Belizaire, R., Isacson, O., Jenner, P. & Olanow, C. W. Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46 (2003).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Scott, M. D. & Frydman, J. Aberrant protein folding as the molecular basis of cancer. Methods Mol. Biol. 232, 67–76 (2003).

    CAS  PubMed  Google Scholar 

  15. 15

    Soussi, T. & Wiman, K. G. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12, 303–312 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Brooks, C. L. & Gu, W. p53 regulation by ubiquitin. FEBS Lett. 585, 2803–2809 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Rotter, V. p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc. Natl Acad. Sci. USA 80, 2613–2617 (1983).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chem. Biol. 7, 285–295 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Kim, C. H. et al. Role of reactive oxygen species-dependent protein aggregation in metabolic stress-induced necrosis. Int. J. Oncol. 37, 97–102 (2010).

    CAS  PubMed  Google Scholar 

  22. 22

    Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Tanaka, K., Suzuki, T., Hattori, N. & Mizuno, Y. Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta 1695, 235–247 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Chung, K. K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G. & Selkoe, D. J. Dopamine covalently modifies and functionally inactivates parkin. Nature Med. 11, 1214–1221 (2005).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Winklhofer, K. F., Henn, I. H., Kay-Jackson, P. C., Heller, U. & Tatzelt, J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem. 278, 47199–47208 (2003).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Rakovic, A. et al. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS ONE 6, e16746 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Saito, S. et al. Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res. 56, 5586–5589 (1996).

    CAS  PubMed  Google Scholar 

  32. 32

    Orphanos, V. et al. Allelic imbalance of chromosome 6q in ovarian tumours. Br. J. Cancer 71, 666–669 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Kong, F. M., Anscher, M. S., Washington, M. K., Killian, J. K. & Jirtle, R. L. M6P/IGF2R is mutated in squamous cell carcinoma of the lung. Oncogene 19, 1572–1578 (2000).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Negrini, M. et al. Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res. 54, 1331–1336 (1994).

    CAS  PubMed  Google Scholar 

  35. 35

    Cesari, R. et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc. Natl Acad. Sci. USA 100, 5956–5961 (2003).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet. 42, 77–82 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Klein, C., Lohmann-Hedrich, K., Rogaeva, E., Schlossmacher, M. G. & Lang, A. E. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol. 6, 652–662 (2007).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Tay, S. P. et al. Parkin enhances the expression of cyclin-dependent kinase 6 and negatively regulates the proliferation of breast cancer cells. J. Biol. Chem. 285, 29231–29238 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    da Costa, C. A. et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biol. 11, 1370–1375 (2009).

    PubMed  Article  CAS  Google Scholar 

  40. 40

    Rodriguez-Gonzalez, A. et al. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res. 68, 2557–2560 (2008).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Olzmann, J. A. & Chin, L. S. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85–87 (2008).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Tang, M. et al. Interactions of Wnt/β-catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J. Neurosci. 30, 9280–9291 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Cicero, S. & Herrup, K. Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J. Neurosci. 25, 9658–9668 (2005).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Nguyen, M. D., Mushynski, W. E. & Julien, J. P. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ. 9, 1294–1306 (2002).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Simon, D. K. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 25, 71–81 (2004).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genet. 38, 515–517 (2006).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Yang, J. L., Weissman, L., Bohr, V. A. & Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Ikeda, Y., Matsunaga, Y., Takiguchi, M. & Ikeda, M. A. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain. Gene Expr. Patterns 11, 64–71 (2011).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Staropoli, J. F. et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749 (2003).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Lopes, J. P. & Agostinho, P. Cdk5: multitasking between physiological and pathological conditions. Prog. Neurobiol. 94, 49–63 (2011).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Hoglinger, G. U. et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc. Natl Acad. Sci. USA 104, 3585–3590 (2007).

    Article  CAS  Google Scholar 

  53. 53

    Ko, H. S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968–7978 (2005).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Di Fonzo, A. et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240–245 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Jackson, P. K. & Eldridge, A. G. The SCF ubiquitin ligase: an extended look. Mol. Cell 9, 923–925 (2002).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Laman, H. et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J. 24, 3104–3116 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Chang, Y. F., Cheng, C. M., Chang, L. K., Jong, Y. J. & Yuo, C. Y. The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem. Biophys. Res. Commun. 342, 1022–1026 (2006).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Bretaud, S., Allen, C., Ingham, P. W. & Bandmann, O. p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J. Neurochem. 100, 1626–1635 (2007).

    CAS  PubMed  Google Scholar 

  60. 60

    Fan, J. et al. DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J. Biol. Chem. 283, 4022–4030 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Giaime, E. et al. Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death Differ. 17, 158–169 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov. 9, 775–789 (2010).

    CAS  Article  Google Scholar 

  66. 66

    Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    CAS  Article  Google Scholar 

  67. 67

    Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1, 1269 (1989).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci. 3, 1301–1306 (2000).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  Article  Google Scholar 

  70. 70

    Gargini, R., Garcia-Escudero, V. & Izquierdo, M. Therapy mediated by mitophagy abrogates tumor progression. Autophagy 7, 466–476 (2011).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Kim, J. H. et al. Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7 (2011).

  72. 72

    Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Pridgeon, J. W., Olzmann, J. A., Chin, L. S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74

    Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418 (2007).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Martin, S. A., Hewish, M., Sims, D., Lord, C. J. & Ashworth, A. Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res. 71, 1836–1848 (2011).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Shendelman, S., Jonason, A., Martinat, C., Leete, T. & Abeliovich, A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol. 2, e362 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81

    Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. & Ting, J. P. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl Acad. Sci. USA 103, 15091–15096 (2006).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    van der Brug, M. P. et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc. Natl Acad. Sci. USA 105, 10244–10249 (2008).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Irrcher, I. et al. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746 (2010).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Kamp, F. et al. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 29, 3571–3589 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Xiong, H. et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Invest. 119, 650–660 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Nagakubo, D. et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231, 509–513 (1997).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug Discov. 8, 627–644 (2009).

    CAS  Article  Google Scholar 

  90. 90

    Paisan-Ruiz, C. LRRK2 gene variation and its contribution to Parkinson disease. Hum. Mutat. 30, 1153–1160 (2009).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Rev. Neurosci. 11, 791–797 (2010).

    CAS  Article  Google Scholar 

  92. 92

    Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432–2443 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Kumar, A. et al. The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS ONE 5, e8730 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95

    Ohta, E., Kawakami, F., Kubo, M. & Obata, F. LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations. FEBS Lett. 585, 2165–2170 (2011).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Looyenga, B. D. et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc. Natl Acad. Sci. USA 108, 1439–1444 (2011).

    PubMed  Article  Google Scholar 

  97. 97

    Gera, J. F. et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737–2746 (2004).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci. 12, 1129–1135 (2009).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Murata, H. et al. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J. Biol. Chem. 286, 7182–7189 (2011).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Unoki, M. & Nakamura, Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 4457–4465 (2001).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    MacKeigan, J. P. et al. Proteomic profiling drug-induced apoptosis in non-small cell lung carcinoma: identification of RS/DJ-1 and RhoGDIα. Cancer Res. 63, 6928–6934 (2003).

    CAS  PubMed  Google Scholar 

  103. 103

    Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA 102, 13670–13675 (2005).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Aleyasin, H. et al. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc. Natl Acad. Sci. USA 107, 3186–3191 (2010).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Beutler, E. Gaucher disease: new molecular approaches to diagnosis and treatment. Science 256, 794–799 (1992).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Shiran, A., Brenner, B., Laor, A. & Tatarsky, I. Increased risk of cancer in patients with Gaucher disease. Cancer 72, 219–224 (1993).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    de Fost, M. et al. Increased incidence of cancer in adult Gaucher disease in Western Europe. Blood Cells Mol. Dis. 36, 53–58 (2006).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Shoenfeld, Y. et al. Gaucher's disease: a disease with chronic stimulation of the immune system. Arch. Pathol. Lab. Med. 106, 388–391 (1982).

    CAS  PubMed  Google Scholar 

  112. 112

    Allen, M. J., Myer, B. J., Khokher, A. M., Rushton, N. & Cox, T. M. Pro-inflammatory cytokines and the pathogenesis of Gaucher's disease: increased release of interleukin-6 and interleukin-10. QJM 90, 19–25 (1997).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Velayati, A., Yu, W. H. & Sidransky, E. The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr. Neurol. Neurosci. Rep. 10, 190–198 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Neumann, J. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132, 1783–1794 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Ron, I. & Horowitz, M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum. Mol. Genet. 14, 2387–2398 (2005).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    CAS  Article  Google Scholar 

  117. 117

    Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Manning-Bog, A. B., Schule, B. & Langston, J. W. α-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 30, 1127–1132 (2009).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285–1291 (1988).

    CAS  Article  Google Scholar 

  120. 120

    Depino, A. M. et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. Eur. J. Neurosci. 18, 2731–2742 (2003).

    Article  PubMed  Google Scholar 

  121. 121

    Burguillos, M. A. et al. Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319–324 (2011).

    CAS  Article  Google Scholar 

  122. 122

    Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Falkenburger, B. H. & Schulz, J. B. Limitations of cellular models in Parkinson's disease research. J. Neural Transm. Suppl. 70, 261–268 (2006).

    CAS  Article  Google Scholar 

  124. 124

    Han, S. S., Williams, L. A. & Eggan, K. C. Constructing and deconstructing stem cell models of neurological disease. Neuron 70, 626–644 (2011).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Beck, J. A. et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Hum. Mol. Genet. 13, 1219–1224 (2004).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Rowe, I. F., Ridler, M. A. & Gibberd, F. B. Presenile dementia associated with mosaic trisomy 21 in a patient with a Down syndrome child. Lancet 2, 229 (1989).

    CAS  PubMed  Article  Google Scholar 

  127. 127

    Post, B., Merkus, M. P., de Haan, R. J. & Speelman, J. D. Prognostic factors for the progression of Parkinson's disease: a systematic review. Mov. Disord. 22, 1839–1851; quiz 1988 (2007).

    PubMed  Article  Google Scholar 

  128. 128

    Newell, G. R., Spitz, M. R. & Sider, J. G. Cancer and age. Semin. Oncol. 16, 3–9 (1989).

    CAS  PubMed  Google Scholar 

  129. 129

    Gilbert, W. Origins of Life: the RNA world. Nature 319, 618 (1986).

    Article  Google Scholar 

  130. 130

    Gapstur, S. M. & Thun, M. J. Progress in the war on cancer. JAMA 303, 1084–1085 (2010).

    PubMed  Article  Google Scholar 

  131. 131

    Haber, D. A., Gray, N. S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Jansson, B. & Jankovic, J. Low cancer rates among patients with Parkinson's disease. Ann. Neurol. 17, 505–509 (1985).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Moller, H., Mellemkjaer, L., McLaughlin, J. K. & Olsen, J. H. Occurrence of different cancers in patients with Parkinson's disease. BMJ 310, 1500–1501 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Minami, Y., Yamamoto, R., Nishikouri, M., Fukao, A. & Hisamichi, S. Mortality and cancer incidence in patients with Parkinson's disease. J. Neurol. 247, 429–434 (2000).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Hernan, M. A., Takkouche, B., Caamano-Isorna, F. & Gestal-Otero, J. J. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann. Neurol. 52, 276–284 (2002).

    PubMed  Article  Google Scholar 

  136. 136

    Olsen, J. H. et al. Atypical cancer pattern in patients with Parkinson's disease. Br. J. Cancer 92, 201–205 (2005).

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Bajaj, A., Driver, J. A. & Schernhammer, E. S. Parkinson's disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control 21, 697–707 (2010).

    Article  PubMed  Google Scholar 

  138. 138

    Liu, R., Gao, X., Lu, Y. & Chen, H. Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 76, 2002–2009 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S. & Greene, L. A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci. 30, 1166–1175 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Article  CAS  Google Scholar 

  141. 141

    Lee, B. D. et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Med. 16, 998–1000 (2010).

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Nair, B. C., Vallabhaneni, S., Tekmal, R. R. & Vadlamudi, R. K. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res. 13, R80 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143

    Smith, P. D. et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 13650–13655 (2003).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Chico, L. K., Van Eldik, L. J. & Watterson, D. M. Targeting protein kinases in central nervous system disorders. Nature Rev. Drug Discov. 8, 892–909 (2009).

    CAS  Article  Google Scholar 

  145. 145

    Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet. 10, 1307–1315 (2001).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    McLean, P. J., Klucken, J., Shin, Y. & Hyman, B. T. Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun. 321, 665–669 (2004).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Riedel, M., Goldbaum, O., Schwarz, L., Schmitt, S. & Richter-Landsberg, C. 17-AAG induces cytoplasmic α-synuclein aggregate clearance by induction of autophagy. PLoS ONE 5, e8753 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148

    Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol. 12, 119–131 (2010).

    CAS  Article  Google Scholar 

  149. 149

    Pandey, N., Strider, J., Nolan, W. C., Yan, S. X. & Galvin, J. E. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol. 115, 479–489 (2008).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    Kawashima, M., Suzuki, S. O., Doh-ura, K. & Iwaki, T. α-Synuclein is expressed in a variety of brain tumors showing neuronal differentiation. Acta Neuropathol. 99, 154–160 (2000).

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Matsuo, Y. & Kamitani, T. Parkinson's disease-related protein, α-synuclein, in malignant melanoma. PLoS ONE 5, e10481 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152

    Bruening, W. et al. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 88, 2154–2163 (2000).

    CAS  PubMed  Article  Google Scholar 

  153. 153

    Li, L. et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin. Cancer Res. 16, 2949–2958 (2010).

    CAS  PubMed  Article  Google Scholar 

  154. 154

    Okochi-Takada, E. et al. Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int. J. Cancer 119, 1338–1344 (2006).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Kagara, I. et al. CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J. Urol. 180, 343–351 (2008).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Hod, Y. Differential control of apoptosis by DJ-1 in prostate benign and cancer cells. J. Cell. Biochem. 92, 1221–1233 (2004).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236; discussion 222 (2002).

    PubMed  Article  Google Scholar 

  158. 158

    Lewy, F. H. in Handbuch der Neurologie (ed. Lewandowsky, M.) 920–933 (Springer, Berlin, 1912).

    Google Scholar 

  159. 159

    Tretiakoff, C. Contribution a l'etude de l'anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la athogenie des troubles du tonus musculaire et de la maladie de Parkinson (Jouve and Co, Paris, 1919).

    Google Scholar 

  160. 160

    Carlsson, A., Lindqvist, M. & Magnusson, T. 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180, 1200 (1957).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Ehringer, H. & Hornykiewicz, O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin. Wochenschr. 38, 1236–1239 (1960).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Birkmayer, W. & Hornykiewicz, O. [The L-3, 4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia]. Wien. Klin. Wochenschr. 73, 787–788 (1961).

    CAS  PubMed  Google Scholar 

  163. 163

    Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. Modification of Parkinsonism--chronic treatment with L-dopa. N. Engl. J. Med. 280, 337–345 (1969).

    CAS  PubMed  Article  Google Scholar 

  164. 164

    Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    CAS  PubMed  Article  Google Scholar 

  165. 165

    Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    CAS  PubMed  Article  Google Scholar 

  166. 166

    Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    CAS  Article  PubMed  Google Scholar 

  167. 167

    Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol. Genet. Metab. 81, 70–73 (2004).

    CAS  PubMed  Article  Google Scholar 

  168. 168

    Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).

    CAS  Article  Google Scholar 

  169. 169

    Nalls, M. A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The work was funded by a Wellcome Trust Medical Research Council (MRC) Parkinson's Disease Consortium grant to University College London Institute of Neurology, the University of Sheffield and the MRC Protein Phosphorylation Unit at the University of Dundee (grant number WT089698). H.P-F. is funded by the MRC (award number G0700183).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nicholas W. Wood's homepage

COSMIC

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Devine, M., Plun-Favreau, H. & Wood, N. Parkinson's disease and cancer: two wars, one front. Nat Rev Cancer 11, 813–823 (2011). https://doi.org/10.1038/nrc3150

Download citation

Further reading