Abstract
Metastasis is a complex, multistep process responsible for >90% of cancer-related deaths. In addition to genetic and external environmental factors, the physical interactions of cancer cells with their microenvironment, as well as their modulation by mechanical forces, are key determinants of the metastatic process. We reconstruct the metastatic process and describe the importance of key physical and mechanical processes at each step of the cascade. The emerging insight into these physical interactions may help to solve some long-standing questions in disease progression and may lead to new approaches to developing cancer diagnostics and therapies.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




References
- 1
Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).
- 2
Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).
- 3
Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).
- 4
Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cellmetastasis. Science 331, 1559–1564 (2011).
- 5
Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).
- 6
Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).
- 7
Hotary, K., Li, X. Y., Allen, E., Stevens, S. L. & Weiss, S. J. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20, 2673–2686 (2006).
- 8
Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W. & Weiss, S. J. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45 (2003).
- 9
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).
- 10
De Wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008).
- 11
Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009).
- 12
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).
- 13
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
- 14
Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).
- 15
Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).
- 16
Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol. 12, 598–604 (2010).
- 17
Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).
- 18
Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595 (2003).
- 19
Yamazaki, D., Kurisu, S. & Takenawa, T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28, 1570–1583 (2009).
- 20
Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).
- 21
Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).
- 22
Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).
- 23
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev. Mol. Cell Biol. 11, 633–643 (2010).
- 24
Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).
- 25
Sun, S. X., Walcott, S. & Wolgemuth, C. W. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 20, R649–R654 (2010).
- 26
Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).
- 27
Shih, W. T. & Yamada, S. Myosin IIA dependent retrograde flow drives 3D cellmigration. Biophys. J. 98, L29–L31 (2010).
- 28
Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).
- 29
Legant, W. R., Miller, J. S., Blakely, B. L., Cohen, D. M., Genin, G. M. & Chen, C. S. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods 7, 969–971 (2010).
- 30
Ellsmere, J. C., Khanna, R. A. & Lee, J. M. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 20, 1143–1150 (1999).
- 31
Beerling, E., Ritsma, L., Vrisekoop, N., Derksen, P. W. & van Rheenen, J. Intravital microscopy: new insights into metastasis of tumors. J. Cell Sci. 124, 299–310 (2011).
- 32
Sahai, E., Wyckoff, J., Philippar, U., Segall, J. E., Gertler, F. & Condeelis, J. Simultaneous imaging of, GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).
- 33
Giampieri, S. et al. Localized and reversible TGF-β signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009).
- 34
Hidalgo-Carcedo, C. et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nature Cell Biol. 13, 49–58 (2011).
- 35
Kurisu, S. & Takenawa, T. WASP and WAVE family proteins: friends or foes in cancer invasion? Cancer Sci. 101, 2093–2104 (2010).
- 36
Iwaya, K., Norio, K. & Mukai, K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod. Pathol. 20, 339–343 (2007).
- 37
Yoder, B. J. et al. The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clin. Cancer Res. 11, 186–192 (2005).
- 38
Li, J. et al. PTEN, a putative protein tyrosine phosphotase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).
- 39
Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).
- 40
Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).
- 41
Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).
- 42
Sounni, N. E. et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J. 16, 555–564 (2002).
- 43
Adhikari, A. S., Chai, J. & Dunn, A. R. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133, 1686–1689 (2011).
- 44
Kumar, S. & Weaver, V. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).
- 45
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).
- 46
Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).
- 47
Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).
- 48
Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 1–10 (2010).
- 49
Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).
- 50
Tseng, Y., Lee, J. S., Kole, T. P., Jiang, I. & Wirtz, D. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117, 2159–2167 (2004).
- 51
Gerlitz, G. & Bustin, M. Efficient cell migration requires global chromatin condensation. J. Cell Sci. 123, 2207–2217 (2010).
- 52
Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).
- 53
Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314, 1892–1905 (2008).
- 54
Hale, C. M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).
- 55
Lee, J. S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).
- 56
Starr, D. A. & Han, M. ANChors away: an actin based mechanism of nuclear positioning. J. Cell Sci. 116, 211–216 (2003).
- 57
Starr, D. A. et al. unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 128, 5039–5050 (2001).
- 58
Technau, M. & Roth, S. The Drosophila KASH domain proteins Msp-300 and Klarsicht and the SUN domain protein klaroid have no essential function during oogenesis. Fly (Austin) 2, 82–91 (2008).
- 59
Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).
- 60
Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).
- 61
Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).
- 62
Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).
- 63
Panorchan, P., Lee, J. S., Kole, T. P., Tseng, Y. & Wirtz, D. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys. J. 91, 3499–3507 (2006).
- 64
Baker, E. L., Bonnecaze, R. T. & Zaman, M. H. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97, 1013–1021 (2009).
- 65
Baker, E. L., Lu, J., Yu, D. H., Bonnecaze, R. T. & Zaman, M. H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).
- 66
Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).
- 67
Swartz, M. A. & Fleury, M. E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9, 229–256 (2007).
- 68
Mycielska, M. E. & Djamgoz, M. B. A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117, 1631–1639 (2004).
- 69
Fidler, I. J., Yano, S., Zhang, R. D., Fujimaki, T. & Bucana, C. D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 3, 53–57 (2002).
- 70
Turitto, V. T. Blood viscosity, mass transport, and thrombogenesis. Prog. Hemost. Thromb. 6, 139–177 (1982).
- 71
Weinbaum, S., Cowin, S. C. & Zeng, Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994).
- 72
Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T. & Weinstein, A. M. Mechanotransduction in the renal tubule. Am. J. Physiol. Renal Physiol. 299, F1220–F1236 (2010).
- 73
Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010).
- 74
Zhu, C., Yago, T., Lou, J. Z., Zarnitsyna, V. I. & McEver, R. P. Mechanisms for flow-enhanced cell adhesion. Ann. Biomed. Eng. 36, 604–621 (2008).
- 75
Chang, K. C. & Hammer, D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys. J. 76, 1280–1292 (1999).
- 76
Duguay, D., Foty, R. A. & Steinberg, M. S. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003).
- 77
Niessen, C. M. & Gumbiner, B. M. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002).
- 78
Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).
- 79
Marshall, B. T., Long, M., Piper, J. W., Yago, T., McEver, R. P. & Zhu, C. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).
- 80
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
- 81
Lorger, M., Krueger, J. S., O'Neal, M., Staflin, K. & Felding-Habermann, B. Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain. Proc. Natl Acad. Sci. USA 106, 10666–10671 (2009).
- 82
Gasic, G. J., Gasic, T. B. & Stewart, C. C. Antimetastatic effects associated with platelet reduction. Proc. Natl Acad. Sci. USA 61, 46–52 (1968).
- 83
Camerer, E. et al. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104, 397–401 (2004).
- 84
Karpatkin, S., Pearlstein, E., Ambrogio, C. & Coller, B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J. Clin. Invest. 81, 1012–1019 (1988).
- 85
Nieswandt, B., Hafner, M., Echtenacher, B. & Mannel, D. N. Lysis of tumor cells by natutal killer cells in mice is impeded by platelets. Cancer Res. 59, 1295–1300 (1999).
- 86
Palumbo, J. S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105, 178–185 (2005).
- 87
Burdick, M. M. & Konstantopoulos, K. Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am. J. Physiol. Cell Physiol. 287, C539–C547 (2004).
- 88
Felding-Habermann, B., Habermann, R., Salvidar, E. & Ruggeri, Z. M. Role of β3 integrins in melanoma cell adhesion to activated platelets under flow. J. Biol. Chem. 271, 5892–5900 (1996).
- 89
Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nature Rev. Cancer 11, 123–134 (2011).
- 90
Nash, G., Turner, L., Scully, M. & Kakkar, A. Platelets and cancer. Lancet Oncol. 3, 425–430 (2002).
- 91
Pinedo, H. M., Verheul, H. M., D'Amato, R. J. & Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 352, 1775–1777 (1998).
- 92
Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F. & Honn, K. V. Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab. Invest. 53, 470–478 (1985).
- 93
Burdick, M. M., McCaffery, J. M., Kim, Y. S., Bochner, B. S. & Konstantopoulos, K. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am. J. Physiol. Cell Physiol. 284, C977–C987 (2003).
- 94
Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).
- 95
Borsig, L., Wong, R., Hynes, R. O., Varki, N. M. & Varki, A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA 99, 2193–2198 (2002).
- 96
Jadhav, S., Bochner, B. S. & Konstantopoulos, K. Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte – colon carcinoma cell adhesive interactions. J. Immunol. 167, 5986–5993 (2001).
- 97
McCarty, O. J. T., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).
- 98
Laubli, H., Stevenson, J. L., Varki, A., Varki, N. M. & Borsig, L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536–1542 (2006).
- 99
Biancone, L., Araki, M., Araki, K., Vassalli, P. & Stamenkovic, I. Redirection of tumor metastasis by expression of E-selectin in vivo. J. Exp. Med. 183, 581–587 (1996).
- 100
Mannori, G. et al. Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am. J. Pathol. 151, 233–243 (1997).
- 101
Napier, S. L., Healy, Z. R., Schnaar, R. L. & Konstantopoulos, K. Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of CD44V and alternative sialofucosylated selectin ligands. J. Biol. Chem. 282, 3433–3441 (2007).
- 102
Thomas, S. N., Schnaar, R. L. & Konstantopoulos, K. Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: comparative biochemical properties of selectin ligands in host and tumor cells. Am. J. Physiol. Cell Physiol. 296, C505–C513 (2009).
- 103
Thomas, S. N., Zhu, F., Schnaar, R. L., Alves, C. S. & Konstantopoulos, K. Carcinoembryonic antigen and CD44v cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. J. Biol. Chem. 283, 15647–15655 (2008).
- 104
Konstantopoulos, K. & Thomas, S. N. Cancer cells in transit: the vascular interactions of tumor cells. Annu. Rev. Biomed. Eng. 11, 177–202 (2009).
- 105
Varki, A., Varki, N. M. & Borsig, L. Molecular basis of metastasis. N. Engl. J. Med. 360, 1678–1679; author reply 1679–1680 (2009).
- 106
Jain, S. et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc. Natl Acad. Sci. USA 104, 9024–9028 (2007).
- 107
Jain, S., Russell, S. & Ware, J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J. Thromb. Haemost. 7, 1713–1717 (2009).
- 108
Weiss, L. Patterns of metastasis. Cancer Metastasis Rev. 19, 281–301 (2000).
- 109
Jacob, K., Sollier, C. & Jabado, N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev. Proteomics 4, 741–756 (2007).
- 110
Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003).
- 111
Weiss, L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin. Exp. Metastasis 10, 191–199 (1992).
- 112
Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).
- 113
Trepel, M., Arap, W. & Pasqualini, R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6, 399–404 (2002).
- 114
Chang, S. F. et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl Acad. Sci. USA 105, 3927–3932 (2008).
- 115
Lawler, K., O'Sullivan, G., Long, A. & Kenny, D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci. 100, 1082–1087 (2009).
- 116
Raub, C. B. et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92, 2212–2222 (2007).
- 117
Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).
- 118
Buxboim, A., Ivanovska, I. L. & Discher, D. E. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? J. Cell Sci. 123, 297–308 (2010).
- 119
Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall — 2 Couette flow. Chem. Eng. Sci. 22, 653–660 (1967).
- 120
Hanley, W. D., Wirtz, D. & Konstantopoulos, K. Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J. Cell Sci. 117, 2503–2511 (2004).
- 121
Panorchan, P. et al. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J. Cell Sci. 119, 66–74 (2006).
- 122
Raman, P., Alves, C., Wirtz, D. & Konstantopoulos, K. Single molecule binding of CD44 to fibrin versus P-selectin predicts their distinct shear-dependent interactions in cancer. J. Cell Sci. 124, 1903–1910 (2011).
- 123
Li, F., Redick, S. D., Erickson, H. P. & Moy, V. T. Force measurements of the α5β1 integrin-fibronectin interaction. Biophys. J. 84, 1252–1262 (2003).
- 124
Bajpai, S. et al. α-Catenin mediates initial E-cadherin-dependent cell-cell recognition and subsequent bond strengthening. Proc. Natl Acad. Sci. USA 105, 18331–18336 (2008).
- 125
Bajpai, S., Feng, Y., Krishnamurthy, R., Longmore, G. D. & Wirtz, D. Loss of α-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J. Biol. Chem. 284, 18252–18259 (2009).
- 126
Garcia, A. J., Ducheyne, P. & Boettiger, D. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18, 1091–1098 (1997).
- 127
DeGrendele, H. C., Kosfiszer, M., Estess, P. & Siegelman, M. H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J. Immunol. 159, 2549–2553 (1997).
- 128
Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997).
- 129
Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab. Chip 9, 1640–1642 (2009).
- 130
Thery, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).
- 131
Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).
- 132
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).
- 133
Mali, P., Wirtz, D. & Searson, P. C. Interplay of RhoA and motility in the programmed spreading of daughter cells postmitosis. Biophys. J. 99, 3526–3534 (2010).
- 134
Wildt, B., Wirtz, D. & Searson, P. C. Programmed subcellular release for studying the dynamics of cell detachment. Nature Methods 6, 211–213 (2009).
- 135
Wildt, B., Wirtz, D. & Searson, P. C. Triggering cell detachment from patterned electrode arrays by programmed subcellular release. Nature Protoc. 5, 1273–1280 (2010).
- 136
Ghaly, T., Wildt, B. E. & Searson, P. C. Electrochemical release of fluorescently labeled thiols from patterned gold surfaces. Langmuir 26, 1420–1423 (2010).
- 137
Sniadecki, N. J., Lamb, C. M., Liu, Y., Chen, C. S. & Reich, D. H. Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev. Sci. Instrum. 79, 044302 (2008).
- 138
Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).
- 139
Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).
- 140
Song, B. et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nature Protoc. 2, 1479–1489 (2007).
- 141
Huang, C. W., Cheng, J. Y., Yen, M. H. & Young, T. H. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens. Bioelectron. 24, 3510–3516 (2009).
- 142
Lee, J. S., Chang, M. I., Tseng, Y. & Wirtz, D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol. Biol. Cell 16, 871–880 (2005).
- 143
Wojciak-Stothard, B. & Ridley, A. J. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 161, 429–439 (2003).
- 144
Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).
- 145
Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).
- 146
Daniels, B. R., Masi, B. C. & Wirtz, D. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 90, 4712–4719 (2006).
- 147
Massiera, G., Van Citters, K. M., Biancaniello, P. L. & Crocker, J. C. Mechanics of single cells: rheology, time dependence, and fluctuations. Biophys. J. 93, 3703–3713 (2007).
- 148
Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Fibroblast adaptation and stiffness matching to soft eastic substrates. Biophys. J. 93, 4453–4461 (2007).
- 149
Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).
- 150
Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).
- 151
Rahman, A., Tseng, Y. & Wirtz, D. Micromechanical coupling between cell surface receptors and RGD peptides. Biochem. Biophys. Res. Commun. 296, 771–778 (2002).
- 152
Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).
- 153
Zheng, J. et al. Tensile regulation of axonal elongation and initiation. J. Neurosci. 11, 1117–1125 (1991).
- 154
Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).
- 155
Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).
- 156
Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).
- 157
Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).
- 158
Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).
- 159
Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).
- 160
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
- 161
Gerecht, S. et al. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28, 4068–4077 (2007).
- 162
Karuri, N. W. et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117, 3153–3164 (2004).
- 163
Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).
- 164
Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Ignatius, A. & Claes, L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 33, 45–51 (2000).
- 165
Hubbell, J. Biomaterials in tissue engineering. Biotechnology 13, 565–576 (1995).
- 166
Irimia, D. & Toner, M. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol. (Camb.) 1, 506–512 (2009).
- 167
Wang, C. J. & Levchenko, A. Microfluidics technology for systems biology research. Methods Mol. Biol. 500, 203–219 (2009).
- 168
Sundararaghavan, H. G., Monteiro, G. A., Firestein, B. L. & Shreiber, D. I. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102, 632–643 (2009).
- 169
Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).
- 170
Rogers, S. S., Waigh, T. A. & Lu, J. R. Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94, 3313–3322 (2008).
- 171
Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).
- 172
Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5, 1019–1021 (2008).
- 173
Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).
- 174
Phair, R. D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nature Rev. Mol. Cell Biol. 2, 898–907 (2001).
- 175
Pertz, O. & Hahn, K. M. Designing biosensors for Rho family proteins — deciphering the dynamics of Rho family GTPase activation in living cells. J. Cell Sci. 117, 1313–1318 (2004).
- 176
Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K. M. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619 (2004).
- 177
Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).
- 178
Magde, D., Elson, E. L. & Webb, W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).
- 179
Daniels, B. R., Perkins, E. M., Dobrowsky, T. M., Sun, S. X. & Wirtz, D. Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion. J. Cell Biol. 184, 473–479 (2009).
- 180
Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).
- 181
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
- 182
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Acknowledgements
The authors gratefully acknowledge support from the US National Institutes of Health (grants U54CA143868, U54CA151838 and RO1CA101135).
Author information
Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Amoeboid migration
-
A mode of three-dimensional cell migration in a matrix that involves dynamic cell-shape changes through actomyosin assembly and contractility, and adhesion to the extracellular matrix.
- Epithelial-to-mesenchymal transition
-
(EMT). A morphological change that epithelial cells undergo, from a cubical to an elongated shape, following oncogenic transformation, which is often accompanied by loss of expression of the adhesion molecule E-cadherin. Post-EMT, cells adopt a high-motility phenotype.
- Filopodia
-
Narrow projections of the cytoplasm extended beyond the lamellipodia of migrating cells. Filopodia are associated with the formation of nascent focal adhesions with a substratum.
- Focal adhesions
-
Integrin clusters located at the basal surface of adherent cells that connect the extracellular matrix to the cytoskeleton through focal adhesion proteins.
- Interstitial flow
-
Fluid flow in the extracellular matrix, often associated with lymphatic drainage of plasma back to the vascular system.
- Intravital microscopy
-
A microscopy technique used for the observation of biological responses, such as leukocyteendothelial cell interactions, in living tissues in real time. Translucent tissues are commonly used, such as the mesentery or cremaster muscle, which can be easily exteriorized for microscopic observation.
- Lamellipodia
-
Large cytoplasmic projects found primarily at the leading edge of migrating cells, particularly on two-dimensional substrates.
- Mechanosensing
-
The ability of cells to sense and respond to changes in the mechanical compliance of a substrate. Mechanosensing is mediated by focal adhesions and the cytoskeleton in two-dimensional cell culture.
- Mesenchymal migration
-
A mode of three-dimensional cell migration in a matrix that involves integrin-based adhesion. Mesenchymal migration occurs when the pore size of the matrix is much smaller than the cell nucleus.
- Pseudopodia
-
Bulges of constantly changing shape observed in the plasma membrane of migrating cells during amoeboid migration on two-dimensional substrates and mesenchymal migration through three-dimensional matrices.
- Shear rate
-
The relative velocities of adjacent layers of fluid under shear force in conditions of laminar flow.
- Shear stress
-
The magnitude of the tangential force applied onto the surface of an object per unit area. Shear stress is expressed in units of force per unit area (Newtons m−2 in metres kilograms seconds (MKS) units or dynes cm−2 in centimetres grams seconds (CGS) units).
- Stiffness
-
(Also known as elasticity or elastic modulus). A measure of the ability of a material to resist shear forces similarly to a solid. Rubber is elastic and shows little viscosity. A crosslinked collagen matrix is elastic, but not viscous as it does not flow. The cytoplasm of cells is both elastic and viscous (viscoelastic) depending on the rate of deformation.
- Stress fibres
-
Contractile actin filament bundles that contain myosin II, which serves both as an F-actin bundling protein and as a force generator. Stress fibres terminate at focal adhesions at the basal surface of cells on substrates.
- Surface tangential velocity
-
The velocity at the surface of a spinning object.
- Translational velocity
-
The velocity of an object in space.
- Viscosity
-
A measure of the ability of a material to flow like a liquid. Water, glycerol and honey are liquids of increasing viscosity; they are only viscous and show no elasticity.
Rights and permissions
About this article
Cite this article
Wirtz, D., Konstantopoulos, K. & Searson, P. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11, 512–522 (2011). https://doi.org/10.1038/nrc3080
Published:
Issue Date:
Further reading
-
Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer
Cancers (2021)
-
Engineering confining microenvironment for studying cancer metastasis
iScience (2021)
-
Adaptive ordering and filament polymerization of cell cytoskeleton by tunable nanoarrays
Nano Research (2021)
-
The matrix in cancer
Nature Reviews Cancer (2021)
-
Motion of a tumour cell under the blood flow at low Reynolds number in a curved microvessel
Molecular Simulation (2021)