Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Of cancer and cave fish


We propose that the drivers of carcinogenesis lie more in the adaptive changes that are enabled by local or systemic alterations of tissue architecture than in the genetic changes observed in cancer cells. A full understanding of cancer biology and therapy through a cataloguing of the cancer genome is unlikely unless it is integrated into an evolutionary and ecological context.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Wilkens, H. Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidai, Teleostei). Env. Bio. Fishes 62, 251–261 (2001).

    Article  Google Scholar 

  2. 2

    Humphreys, W. F. Milyeringa veritas (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia. Env. Biol. Fishes 62, 297–313 (2001).

    Article  Google Scholar 

  3. 3

    Li, Z., Gan, X. & He, S. Distinct evolutionary patterns between two duplicated color vision genes within cyprinid fishes. J. Mol. Evol. 69, 346–359 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Jeffery, W. R. Regressive evolution in Astyanax cavefish. Annu. Rev. Genet. 43, 25–47 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Borowsky, R. Restoring sight in blind cavefish. Curr. Biol. 18, R23–R24 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Behrens, M., Wilkens, H. & Schmale, H. Cloning of the αA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. Gene 216, 319–326 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Borowsky, R. & Wilkens, H. Mapping a cavefish genome: polygenic systems and regressive evolution. J. Hered. 93, 19–21 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Gatenby, R. A., Gillies, R. J. & Brown, J. S. The evolutionary dynamics of cancer prevention. Nature Rev. Cancer 10, 526–527 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Rubin, H. Saturation density of skin fibroblasts as a quantitative screen for human cancer susceptibility. Cancer Epid. Bio. Prev. 18, 2366–2372 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Mitchell, W. A. & Valone, T. J. The optimization research program: studying adaptations by their function. Q. Rev. Biol. 65, 43–52 (1990).

    Article  Google Scholar 

  12. 12

    Rosenberg, A. The supervenience of biologic concepts. Phil. Sci. 363–386 (1978).

  13. 13

    Rosenberg, A. The structure of Biological Science New York (Cambridge University Press, 1985).

    Google Scholar 

  14. 14

    Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nature Rev. Cancer 8, 56–61 (2008).

    CAS  Article  Google Scholar 

Download references


Grant Support: 1U54CA143970-01

Author information



Corresponding author

Correspondence to Robert A. Gatenby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatenby, R., Gillies, R. & Brown, J. Of cancer and cave fish. Nat Rev Cancer 11, 237–238 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing