Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What is the malignant nature of human ductal carcinoma in situ?

Abstract

Invasive, genetically abnormal carcinoma progenitor cells have been propagated from human and mouse breast ductal carcinoma in situ (DCIS) lesions, providing new insights into breast cancer progression. The survival of DCIS cells in the hypoxic, nutrient-deprived intraductal niche could promote genetic instability and the derepression of the invasive phenotype. Understanding potential survival mechanisms, such as autophagy, that might be functioning in DCIS lesions provides strategies for arresting invasion at the pre-malignant stage. A new, open trial of neoadjuvant therapy for patients with DCIS constitutes a model for testing investigational agents that target malignant progenitor cells in the intraductal niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The stressful microenvironment of the intraductal niche may promote genetic instability.
Figure 2: Autophagy and cell survival in DCIS lesions.
Figure 3: Upstream pathways that intersect with the autophagic pathway.
Figure 4: A neoadjuvant therapy trial for DCIS.

Similar content being viewed by others

References

  1. Allegra, C. et al. NIH state-of-the-science conference statement: diagnosis and management of ductal carcinoma in situ. NIH Consens. State Sci. Statements 26, 1–27 (2009).

  2. Castro, N. P. et al. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res. 10, R87 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Damonte, P. et al. Mammary carcinoma behavior is programmed in the precancer stem cell. Breast Cancer Res. 10, R50 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Espina, V. et al. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS ONE 5, e10240 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11, R7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc. Natl Acad. Sci. USA 100, 5974–5979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Namba, R. et al. Heterogeneity of mammary lesions represent molecular differences. BMC Cancer 6, 275 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sgroi, D. C. Preinvasive breast cancer. Annu. Rev. Pathol. 5, 193–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fordyce, C. et al. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions. Cancer Prev. Res. (Phila) 3, 190–201 (2010).

    Article  CAS  Google Scholar 

  10. Gauthier, M. L. et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer 7, 961–967 (2007).

    Article  CAS  Google Scholar 

  12. Sendoel, A., Kohler, I., Fellmann, C., Lowe, S. W. & Hengartner, M. O. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465, 577–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boecker, W. Preneoplasia of the Breast (Elsevier GmbH, Munich, 2006).

    Google Scholar 

  14. Gudjonsson, T., Adriance, M. C., Sternlicht, M. D., Petersen, O. W. & Bissell, M. J. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J. Mammary Gland Biol. Neoplasia 10, 261–272 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tavassoli, F. in Tumors of the Breast and Female Genital Organs (eds Tavassoli, F. & Devilee, P.) 63–73 (IARC-Press, Lyon, 2003).

    Google Scholar 

  16. Claus, E. B. et al. Pathobiologic findings in DCIS of the breast: morphologic features, angiogenesis, HER-2/neu and hormone receptors. Exp. Mol. Pathol. 70, 303–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hu, M. et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13, 394–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Page, D. L., Dupont, W. D., Rogers, L. W. & Landenberger, M. Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49, 751–758 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Betsill, W. L., Rosen, P. P., Lieberman, P. H. & Robbins, G. F. Intraductal carcinoma. Long-term follow-up after treatment by biopsy alone. JAMA 239, 1863–1867 (1978).

    Article  PubMed  Google Scholar 

  20. Collins, L. C. et al. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses' Health Study. Cancer 103, 1778–1784 (2005).

    Article  PubMed  Google Scholar 

  21. Fisher, B. et al. Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience. Semin. Oncol. 28, 400–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Berman, H. K., Gauthier, M. L. & Tlsty, T. D. Premalignant breast neoplasia: a paradigm of interlesional and intralesional molecular heterogeneity and its biological and clinical ramifications. Cancer Prev. Res. (Phila) 3, 579–587 (2010).

    Article  CAS  Google Scholar 

  23. Lagios, M. D. Heterogeneity of duct carcinoma in situ (DCIS): relationship of grade and subtype analysis to local recurrence and risk of invasive transformation. Cancer Lett. 90, 97–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Bussolati, G., Bongiovanni, M., Cassoni, P. & Sapino, A. Assessment of necrosis and hypoxia in ductal carcinoma in situ of the breast: basis for a new classification. Virchows Arch. 437, 360–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bindra, R. S. & Glazer, P. M. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat. Res. 569, 75–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kongara, S. et al. Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors. Mol. Cancer Res. 8, 873–884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C. Y. et al. Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res. 61, 428–432 (2001).

    CAS  PubMed  Google Scholar 

  28. Mathew, R., Karantza-Wadsworth, V. & White, E. Assessing metabolic stress and autophagy status in epithelial tumors. Meth. Enzymol. 453, 53–81 (2009).

    Article  CAS  Google Scholar 

  29. Nelson, D. A. et al. Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev. 18, 2095–2107 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol. 4, 641–648 (2004).

    Article  CAS  Google Scholar 

  31. Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Levine, B. & Ranganathan, R. Autophagy: Snapshot of the network. Nature 466, 38–40 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lyng, H., Sundfor, K., Trope, C. & Rofstad, E. K. Oxygen tension and vascular density in human cervix carcinoma. Br. J. Cancer 74, 1559–1563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  36. Boyer, M. J., Barnard, M., Hedley, D. W. & Tannock, I. F. Regulation of intracellular pH in subpopulations of cells derived from spheroids and solid tumours. Br. J. Cancer 68, 890–897 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayr, N. A., Staples, J. J., Robinson, R. A., Vanmetre, J. E. & Hussey, D. H. Morphometric studies in intraductal breast carcinoma using computerized image analysis. Cancer 67, 2805–2812 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Pinder, S. E. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 23 (Suppl. 2), S8–S13 (2010).

    Article  PubMed  Google Scholar 

  39. Mihaylova, V. T. et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol. Cell. Biol. 23, 3265–3273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young, S. D., Marshall, R. S. & Hill, R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl Acad. Sci. USA 85, 9533–9537 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rotin, D., Robinson, B. & Tannock, I. F. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer Res. 46, 2821–2826 (1986).

    CAS  PubMed  Google Scholar 

  42. Tannock, I. F. & Kopelyan, I. Influence of glucose concentration on growth and formation of necrosis in spheroids derived from a human bladder cancer cell line. Cancer Res. 46, 3105–3110 (1986).

    CAS  PubMed  Google Scholar 

  43. Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. & Tannock, I. F. The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782–8788 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Jin, S., DiPaola, R. S., Mathew, R. & White, E. Metabolic catastrophe as a means to cancer cell death. J. Cell Sci. 120, 379–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  50. Cuvier, C., Jang, A. & Hill, R. P. Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L + B) secretion. Clin. Exp. Metastasis 15, 19–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Young, S. D. & Hill, R. P. Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J. Natl Cancer Inst. 82, 371–380 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. McDermott, K. M. et al. p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol. 4, e51 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reynolds, P. A. et al. Tumor suppressor p16INK14A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J. Biol. Chem. 281, 24790–24802 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ding, L., Erdmann, C., Chinnaiyan, A. M., Merajver, S. D. & Kleer, C. G. Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res. 66, 4095–4099 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crawford, Y. G. et al. Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5, 263–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kerlikowske, K. et al. Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J. Natl Cancer Inst. 102, 627–637 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Simpson, P. T., Reis-Filho, J. S., Gale, T. & Lakhani, S. R. Molecular evolution of breast cancer. J. Pathol. 205, 248–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Stingl, J. & Caldas, C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nature Rev. Cancer 7, 791–799 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Burkhardt, L. et al. Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res. Treat 123, 757–765 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Li, H. et al. PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp. Mol. Pathol. 88, 150–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Bocker, W. et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab. Invest. 82, 737–746 (2002).

    Article  PubMed  Google Scholar 

  64. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boecker, W. et al. Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J. Pathol. 198, 458–467 (2002).

    Article  PubMed  Google Scholar 

  66. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  PubMed  Google Scholar 

  67. Witkiewicz, A. K. et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am. J. Pathol. 174, 2023–2034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, L. et al. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS ONE 2, e293 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tlsty, T. Cancer: whispering sweet somethings. Nature 453, 604–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Levine, B. & Abrams, J. p53: the Janus of autophagy? Nature Cell Biol. 10, 637–639 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Samaddar, J. S. et al. A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol. Cancer Ther. 7, 2977–2987 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Vazquez-Martin, A., Oliveras-Ferraros, C. & Menendez, J. A. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS ONE 4, e6251 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bellodi, C. et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J. Clin. Invest. 119, 1109–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoyer-Hansen, M. & Jaattela, M. Autophagy: an emerging target for cancer therapy. Autophagy 4, 574–580 (2008).

    Article  PubMed  Google Scholar 

  78. Ostenfeld, M. S. et al. Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4, 487–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Schoenlein, P. V., Periyasamy-Thandavan, S., Samaddar, J. S., Jackson, W. H. & Barrett, J. T. Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance. Autophagy 5, 400–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McPhee, C. K., Logan, M. A., Freeman, M. R. & Baehrecke, E. H. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 465, 1093–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Evans, A. et al. Lesion size is a major determinant of the mammographic features of ductal carcinoma in situ: findings from the Sloane project. Clin. Radiol. 65, 181–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Evans, A. J. et al. Screening-detected and symptomatic ductal carcinoma in situ: mammographic features with pathologic correlation. Radiology 191, 237–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Holland, R. et al. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ. Lancet 335, 519–522 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Stomper, P. C. & Connolly, J. L. Ductal carcinoma in situ of the breast: correlation between mammographic calcification and tumor subtype. AJR Am. J. Roentgenol. 159, 483–485 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Evans, A. J. et al. Correlations between the mammographic features of ductal carcinoma in situ (DCIS) and C-erbB-2 oncogene expression. Nottingham Breast Team. Clin. Radiol. 49, 559–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Hermann, G. et al. Mammographic pattern of microcalcifications in the preoperative diagnosis of comedo ductal carcinoma in situ: histopathologic correlation. Can. Assoc. Radiol. J. 50, 235–240 (1999).

    CAS  PubMed  Google Scholar 

  90. Gao, W., Ding, W. X., Stolz, D. B. & Yin, X. M. Induction of macroautophagy by exogenously introduced calcium. Autophagy 4, 754–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Ducharme, J. & Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet. 31, 257–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Loehberg, C. R. et al. Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammary carcinogenesis. Cancer Res. 67, 12026–12033 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Rahim, R. & Strobl, J. S. Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs 20, 736–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Savarino, A., Lucia, M. B., Giordano, F. & Cauda, R. Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol. 7, 792–793 (2006).

    Article  PubMed  Google Scholar 

  95. Wozniacka, A., Cygankiewicz, I., Chudzik, M., Sysa-Jedrzejowska, A. & Wranicz, J. K. The cardiac safety of chloroquine phosphate treatment in patients with systemic lupus erythematosus: the influence on arrhythmia, heart rate variability and repolarization parameters. Lupus 15, 521–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Maclean, K. H., Dorsey, F. C., Cleveland, J. L. & Kastan, M. B. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Fisher, B. et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl Cancer Inst. 97, 1652–1662 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Vogel, V. G. The NSABP Study of Tamoxifen and Raloxifene (STAR) trial. Expert Rev. Anticancer Ther. 9, 51–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Kelloff, G. J. & Sigman, C. C. Assessing intraepithelial neoplasia and drug safety in cancer-preventive drug development. Nature Rev. Cancer 7, 508–518 (2007).

    Article  CAS  Google Scholar 

  101. O'Shaughnessy, J. A. et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin. Cancer Res. 8, 314–346 (2002).

    PubMed  Google Scholar 

  102. Hwang, E. S. et al. Ductal carcinoma in situ in BRCA mutation carriers. J. Clin. Oncol. 25, 642–647 (2007).

    Article  PubMed  Google Scholar 

  103. Kwong, A. et al. Clinical and pathological characteristics of Chinese patients with BRCA related breast cancer. Hugo J. 3, 63–76 (2009).

    Article  PubMed  Google Scholar 

  104. Smith, K. L. et al. BRCA mutations in women with ductal carcinoma in situ. Clin. Cancer Res. 13, 4306–4310 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Arun, B. et al. High prevalence of preinvasive lesions adjacent to BRCA1/2-associated breast cancers. Cancer Prev. Res. (Phila) 2, 122–127 (2009).

    Article  CAS  Google Scholar 

  106. Deng, C. X. & Scott, F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19, 1059–1064 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a Department of Defense Breast Cancer Research Program award, W81XWH-07-1-0377, to L.A.L. The authors would like to thank K. Edmiston for her role as clinical PI of the trial described in figure 4. The authors also thank B. Mariani and K. Tran, Genetics & IVF Institute, for genetic analysis of DCIS cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance A. Liotta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

NIH Consensus Development Program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espina, V., Liotta, L. What is the malignant nature of human ductal carcinoma in situ?. Nat Rev Cancer 11, 68–75 (2011). https://doi.org/10.1038/nrc2950

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2950

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer