Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renin–angiotensin system and cancer: old dog, new tricks

Key Points

  • This Review presents a contemporary update of the renin–angiotensin system (RAS), explaining its links to cancer through tissue remodelling, inflammation, angiogenesis and apoptosis.

  • In vitro, animal and clinical studies indicate that the RAS is frequently dysregulated in malignancy and correlates with poor patient outcomes.

  • Antagonism of the RAS mostly suppresses tumour growth, metastasis and angiogenesis in a broad range of experimental models of malignancy.

  • Retrospective studies in humans provide some evidence that long-term use of angiotensin-converting enzyme inhibitors might modulate cancer growth and progression.

  • The potential for retooling current drugs that target the RAS for application to cancer therapy is discussed.

Abstract

For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin–angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAS receptor signalling pathways.
Figure 2: Contribution of stromal cell RAS signalling to tumour inflammation, angiogenesis and growth.
Figure 3: RAS and apoptosis.

Similar content being viewed by others

References

  1. Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, e1 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000). References 1 and 2 are coincidental reports that identified a new homologue of ACE, ACE2.

    Article  CAS  PubMed  Google Scholar 

  3. Lambert, D. W., Clarke, N. E. & Turner, A. J. Not just angiotensinases: new roles for the angiotensin-converting enzymes. Cell. Mol. Life Sci. 67, 89–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Albiston, A. L. et al. Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol. Ther. 116, 417–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen, G. & Muller, D. N. The biology of the (pro)renin receptor. J. Am. Soc. Nephrol 21, 18–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Kohlstedt, K. et al. Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells. Mol. Pharmacol. 69, 1725–1732 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jeunemaitre, X. Genetics of the human renin angiotensin system. J. Mol. Med. 86, 637–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Oro, C., Qian, H. & Thomas, W. G. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol. Ther. 113, 210–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rudnicki, M. & Mayer, G. Significance of genetic polymorphisms of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. Pharmacogenomics 10, 463–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Bader, M. Tissue renin–angiotensin–aldosterone systems: targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 50, 439–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Aplin, M., Bonde, M. M. & Hansen, J. L. Molecular determinants of angiotensin II type 1 receptor functional selectivity. J. Mol. Cell. Cardiol. 46, 15–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. de Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W. & Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000).

    CAS  PubMed  Google Scholar 

  13. Hunyady, L. & Catt, K. J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 20, 953–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Mehta, P. K. & Griendling, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yin, G., Yan, C. & Berk, B. C. Angiotensin II signaling pathways mediated by tyrosine kinases. Int. J. Biochem. Cell Biol. 35, 780–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsu, H. et al. Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 48, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lefkowitz, R. J. & Whalen, E. J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol. 16, 162–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Rev. Drug Discov. 9, 373–386 (2010).

    Article  CAS  Google Scholar 

  19. Shah, B. H. & Catt, K. J. TACE-dependent EGF receptor activation in angiotensin-II-induced kidney disease. Trends Pharmacol. Sci. 27, 235–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, N. J., Chan, H. W., Osborne, J. E., Thomas, W. G. & Hannan, R. D. Hijacking epidermal growth factor receptors by angiotensin II: new possibilities for understanding and treating cardiac hypertrophy. Cell. Mol. Life Sci. 61, 2695–2703 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, H. & Eguchi, S. Growth factor receptor transactivation in mediating end organ damage by angiotensin II. Hypertension 47, 339–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996). This paper provides the first strong evidence that GPCRs usurp EGFR signalling processes.

    Article  CAS  PubMed  Google Scholar 

  23. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ohtsu, H., Dempsey, P. J. & Eguchi, S. ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am. J. Physiol. Cell Physiol. 291, C1–C10 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Shah, B. H. & Catt, K. J. Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol. Metab. 15, 241–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Shah, B. H. et al. Differential pathways of angiotensin II-induced extracellularly regulated kinase 1/2 phosphorylation in specific cell types: role of heparin-binding epidermal growth factor. Mol. Endocrinol. 18, 2035–2048 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, W. G. et al. Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ. Res. 90, 135–142 (2002). References 23–27 describe evidence for metalloproteinase involvement in GPCR-mediated EGFR transactivation.

    Article  CAS  PubMed  Google Scholar 

  28. Albiston, A. L. et al. Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem. 276, 48623–48626 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Lyngso, C., Erikstrup, N. & Hansen, J. L. Functional interactions between 7TM receptors in the renin–angiotensin system-dimerization or crosstalk? Mol. Cell. Endocrinol. 302, 203–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, G. The (pro)renin receptor in health and disease. Ann. Med. 42, 13–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Porrello, E. R., Delbridge, L. M. & Thomas, W. G. The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front. Biosci. 14, 958–972 (2009).

    Article  CAS  Google Scholar 

  32. Rompe, F., Unger, T. & Steckelings, U. M. The angiotensin AT2 receptor in inflammation. Drug News Perspect. 23, 104–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Siragy, H. M. The potential role of the angiotensin subtype 2 receptor in cardiovascular protection. Curr. Hypertens. Rep. 11, 260–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Steckelings, U. M., Kaschina, E. & Unger, T. The AT2 receptor-a matter of love and hate. Peptides 26, 1401–1409 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ayoub, M. A. & Pfleger, K. D. Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr. Opin. Pharmacol. 10, 44–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ferre, S. et al. Building a new conceptual framework for receptor heteromers. Nature Chem. Biol. 5, 131–134 (2009).

    Article  CAS  Google Scholar 

  37. Unger, T. & Dahlof, B. Compound 21, the first orally active, selective agonist of the angiotensin type 2 receptor (AT2): implications for AT2 receptor research and therapeutic potential. J. Renin Angiotensin Aldosterone Syst. 11, 75–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wan, Y. et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J. Med. Chem. 47, 5995–6008 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Iwai, M. & Horiuchi, M. Role of renin–angiotensin system in adipose tissue dysfunction. Hypertens. Res. 32, 425–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, H., Rateri, D. L., Cassis, L. A. & Daugherty, A. The role of the renin–angiotensin system in aortic aneurysmal diseases. Curr. Hypertens. Rep. 10, 99–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weiss, D., Sorescu, D. & Taylor, W. R. Angiotensin II and atherosclerosis. Am. J. Cardiol. 87, 25C–32C (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Schiffrin, E. L. T lymphocytes: a role in hypertension? Curr. Opin. Nephrol. Hypertens. 19, 181–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Heringer-Walther, S. et al. Angiotensin-(1–7) stimulates hematopoietic progenitor cells in vitro and in vivo. Haematologica 94, 857–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, T. S. & Zambidis, E. T. A role for the renin–angiotensin system in hematopoiesis. Haematologica 94, 745–747 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zambidis, E. T. et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112, 3601–3614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lever, A. F. et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352, 179–184 (1998). This paper is a key retrospective study of the risk of cancer in patients taking ACE inhibitors.

    Article  CAS  PubMed  Google Scholar 

  47. Christian, J. B., Lapane, K. L., Hume, A. L., Eaton, C. B. & Weinstock, M. A. Association of ACE inhibitors and angiotensin receptor blockers with keratinocyte cancer prevention in the randomized VATTC trial. J. Natl Cancer Inst. 100, 1223–1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Lang, L. ACE inhibitors may reduce esophageal cancer incidence. Gastroenterology 131, 343–344 (2006).

    Article  Google Scholar 

  49. Ronquist, G. et al. Association between captopril, other antihypertensive drugs and risk of prostate cancer. Prostate 58, 50–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Wilop, S. et al. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol. 135, 1429–1435 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Paul, M., Poyan Mehr, A. & Kreutz, R. Physiology of local renin–angiotensin systems. Physiol. Rev. 86, 747–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Rhodes, D. R. et al. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc. Natl Acad. Sci. USA 106, 10284–10289 (2009). Through extensive microarray data mining, these authors found AGTR1 to be overexpressed in a subset of breast cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kinoshita, J. et al. Local angiotensin II-generation in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-κB and survivin. Int. J. Oncol. 34, 1573–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Rocken, C. et al. The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin. Cancer Res. 11, 2526–2530 (2005).

    Article  PubMed  Google Scholar 

  55. Rocken, C. et al. The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol. Biomarkers Prev. 16, 1206–1212 (2007).

    Article  PubMed  CAS  Google Scholar 

  56. Suganuma, T. et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin. Cancer Res. 11, 2686–2694 (2005). This study found that AT 1 R is expressed in ovarian carcinoma and is involved in tumour progression and angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  57. Uemura, H. et al. Renin–angiotensin system is an important factor in hormone refractory prostate cancer. Prostate 66, 822–830 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. De Paepe, B., Verstraeten, V. L., De Potter, C. R., Vakaet, L. A. & Bullock, G. R. Growth stimulatory angiotensin II type-1 receptor is upregulated in breast hyperplasia and in situ carcinoma but not in invasive carcinoma. Histochem. Cell Biol. 116, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Amaya, K. et al. Angiotensin II activates MAP kinase and NF-κB through angiotensin II type I receptor in human pancreatic cancer cells. Int. J. Oncol. 25, 849–856 (2004).

    CAS  PubMed  Google Scholar 

  60. Doi, C. et al. Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice. BMC Cancer 10, 67 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Egami, K. et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest. 112, 67–75 (2003). Using a Agtr1a−/− mouse model, this study demonstrated that host AT1A is required for tumour growth and angiogenesis in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujita, M. et al. Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis 26, 271–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Imai, N. et al. Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. Lab. Invest. 87, 189–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tiret, L. et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 51, 197–205 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ebert, M. P. et al. The angiotensin I-converting enzyme gene insertion/deletion polymorphism is linked to early gastric cancer. Cancer Epidemiol. Biomarkers Prev. 14, 2987–2989 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Yigit, B. et al. Effects of ACE I/D polymorphism on prostate cancer risk, tumor grade and metastatis. Anticancer Res. 27, 933–936 (2007).

    CAS  PubMed  Google Scholar 

  68. Medeiros, R. et al. Linkage of angiotensin I-converting enzyme gene insertion/deletion polymorphism to the progression of human prostate cancer. J. Pathol. 202, 330–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. van der Knaap, R. et al. Renin–angiotensin system inhibitors, angiotensin I-converting enzyme gene insertion/deletion polymorphism, and cancer: the Rotterdam Study. Cancer 112, 748–757 (2008).

    Article  PubMed  Google Scholar 

  70. Nikiteas, N., Tsigris, C., Chatzitheofylaktou, A. & Yannopoulos, A. No association with risk for colorectal cancer of the insertion/deletion polymorphism which affects levels of angiotensin-converting enzyme. In Vivo 21, 1065–1068 (2007).

    CAS  PubMed  Google Scholar 

  71. Sugimoto, M. et al. Influences of chymase and angiotensin I-converting enzyme gene polymorphisms on gastric cancer risks in Japan. Cancer Epidemiol. Biomarkers Prev. 15, 1929–1934 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Freitas-Silva, M. et al. Angiotensin I-converting enzyme gene insertion/deletion polymorphism and endometrial human cancer in normotensive and hypertensive women. Cancer Genet. Cytogenet. 155, 42–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Gonzalez-Zuloeta Ladd, A. M. et al. Differential roles of angiotensinogen and angiotensin receptor type 1 polymorphisms in breast cancer risk. Breast Cancer Res. Treat. 101, 299–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Vairaktaris, E. et al. Angiotensinogen polymorphism is associated with risk for malignancy but not for oral cancer. Anticancer Res. 28, 1675–1679 (2008).

    CAS  PubMed  Google Scholar 

  75. Koh, W. P., Yuan, J. M., Van Den Berg, D., Lee, H. P. & Yu, M. C. Polymorphisms in angiotensin II type 1 receptor and angiotensin I-converting enzyme genes and breast cancer risk among Chinese women in Singapore. Carcinogenesis 26, 459–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, J. et al. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer 122, 2249–2254 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ohta, T. et al. Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues. Int. J. Oncol. 23, 593–598 (2003).

    CAS  PubMed  Google Scholar 

  80. Fujimoto, Y., Sasaki, T., Tsuchida, A. & Chayama, K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett. 495, 197–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Nickenig, G. & Harrison, D. G. The AT1-type angiotensin receptor in oxidative stress and atherogenesis: part II: AT1 receptor regulation. Circulation 105, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Brosnihan, K. B., Hodgin, J. B., Smithies, O., Maeda, N. & Gallagher, P. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice. Exp. Physiol. 93, 658–664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gallagher, P. E., Li, P., Lenhart, J. R., Chappell, M. C. & Brosnihan, K. B. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension 33, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Krishnamurthi, K. et al. Estrogen regulates angiotensin AT1 receptor expression via cytosolic proteins that bind to the 5′ leader sequence of the receptor mRNA. Endocrinology 140, 5435–5438 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Nickenig, G. et al. Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 97, 2197–2201 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, Z. et al. Estrogen regulates adrenal angiotensin AT1 receptors by modulating AT1 receptor translation. Endocrinology 144, 3251–3261 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Herr, D. et al. Potential role of renin–angiotensin system for tumor angiogenesis in receptor negative breast cancer. Gynecol. Oncol. 109, 418–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Lim, K. T., Cosgrave, N., Hill, A. D. & Young, L. S. Nongenomic oestrogen signalling in oestrogen receptor negative breast cancer cells: a role for the angiotensin II receptor AT1. Breast Cancer Res. 8, R33 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Rev. Genet. 10, 704–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Martin, M. M., Lee, E. J., Buckenberger, J. A., Schmittgen, T. D. & Elton, T. S. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 281, 18277–18284 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3¢ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Alves Correa, S. A. et al. Association between the angiotensin-converting enzyme (insertion/deletion) and angiotensin II type 1 receptor (A1166C) polymorphisms and breast cancer among Brazilian women. J. Renin Angiotensin Aldosterone Syst. 10, 1151–1158 (2009).

    Article  Google Scholar 

  94. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). A landmark review discussing the various hallmarks of cancer biology.

    Article  CAS  PubMed  Google Scholar 

  95. Heinzerling, J. H., Anthony, T., Livingston, E. H. & Huerta, S. Predictors of distant metastasis and mortality in patients with stage II colorectal cancer. Am. Surg. 73, 230–238 (2007).

    PubMed  Google Scholar 

  96. Fujita, M., Hayashi, I., Yamashina, S., Itoman, M. & Majima, M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem. Biophys. Res. Commun. 294, 441–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Miyajima, A. et al. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res. 62, 4176–4179 (2002).

    CAS  PubMed  Google Scholar 

  98. Attoub, S. et al. Captopril as a potential inhibitor of lung tumor growth and metastasis. Ann. N. Y. Acad. Sci. 1138, 65–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Ishimatsu, S. et al. Angiotensin II augmented migration and invasion of choriocarcinoma cells involves PI3K activation through the AT1 receptor. Placenta 27, 587–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Carl-McGrath, S., Ebert, M. P., Lendeckel, U. & Rocken, C. Expression of the local angiotensin II system in gastric cancer may facilitate lymphatic invasion and nodal spread. Cancer Biol. Ther. 6 1229–1237 (2007).

    Article  Google Scholar 

  101. Berry, M. G., Goode, A. W., Puddefoot, J. R., Vinson, G. P. & Carpenter, R. Integrin β1 upregulation in MCF-7 breast cancer cells by angiotensin II. Eur. J. Surg. Oncol. 26, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Puddefoot, J. R., Udeozo, U. K., Barker, S. & Vinson, G. P. The role of angiotensin II in the regulation of breast cancer cell adhesion and invasion. Endocr. Relat. Cancer 13, 895–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ager, E. I., Neo, J. & Christophi, C. The renin–angiotensin system and malignancy. Carcinogenesis 29, 1675–1684 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Deshayes, F. & Nahmias, C. Angiotensin receptors: a new role in cancer? Trends Endocrinol. Metab. 16, 293–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Smith, G. R. & Missailidis, S. Cancer, inflammation and the AT1 and AT2 receptors. J. Inflamm. (Lond.) 1, 3 (2004).

    Article  CAS  Google Scholar 

  108. Andrade, S. P., Cardoso, C. C., Machado, R. D. & Beraldo, W. T. Angiotensin-II-induced angiogenesis in sponge implants in mice. Int. J. Microcirc. Clin. Exp. 16, 302–307 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Hu, D. E., Hiley, C. R. & Fan, T. P. Comparative studies of the angiogenic activity of vasoactive intestinal peptide, endothelins-1 and -3 and angiotensin II in a rat sponge model. Br. J. Pharmacol. 117, 545–551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Le Noble, F. A., Hekking, J. W., Van Straaten, H. W., Slaaf, D. W. & Struyker Boudier, H. A. Angiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. Eur. J. Pharmacol. 195, 305–306 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Le Noble, F. A. et al. Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am. J. Physiol. 264, R460–R465 (1993).

    CAS  PubMed  Google Scholar 

  112. Walsh, D. A. et al. Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br. J. Pharmacol. 120, 1302–1311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Page, E. L., Robitaille, G. A., Pouyssegur, J. & Richard, D. E. Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J. Biol. Chem. 277, 48403–48409 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Ruiz-Ortega, M. et al. Angiotensin II activates nuclear transcription factor κB through AT1 and AT2 in vascular smooth muscle cells: molecular mechanisms. Circ. Res. 86, 1266–1272 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Pouyssegur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Haura, E. B., Turkson, J. & Jove, R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nature Clin. Pract. Oncol. 2, 315–324 (2005).

    Article  CAS  Google Scholar 

  119. Arafat, H. A. et al. Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J. Am. Coll. Surg. 204, 996–1006 (2007).

    Article  PubMed  Google Scholar 

  120. Chehl, N. et al. Angiotensin II regulates the expression of monocyte chemoattractant protein-1 in pancreatic cancer cells. J. Gastrointest. Surg. 13, 2189–2200 (2009).

    Article  PubMed  Google Scholar 

  121. Kosaka, T. et al. Ets-1 and hypoxia inducible factor-1α inhibition by angiotensin II type-1 receptor blockade in hormone-refractory prostate cancer. Prostate 70, 162–169 (2010).

    CAS  PubMed  Google Scholar 

  122. Kosugi, M., Miyajima, A., Kikuchi, E., Horiguchi, Y. & Murai, M. Angiotensin II type 1 receptor antagonist candesartan as an angiogenic inhibitor in a xenograft model of bladder cancer. Clin. Cancer Res. 12, 2888–2893 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Watanabe, Y. et al. Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system. Clin. Cancer Res. 9, 6497–6503 (2003).

    CAS  PubMed  Google Scholar 

  124. Juillerat-Jeanneret, L. et al. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br. J. Cancer 90, 1059–1068 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Uemura, H. et al. Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol. Cancer Ther. 4, 1699–1709 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Neo, J. H., Malcontenti-Wilson, C., Muralidharan, V. & Christophi, C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J. Gastroenterol. Hepatol. 22, 577–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Anandanadesan, R. et al. Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J. Gastrointest. Surg. 12, 57–66 (2008).

    Article  PubMed  Google Scholar 

  128. Huang, W. et al. Angiotensin II type 1 receptor antagonist suppress angiogenesis and growth of gastric cancer xenografts. Dig. Dis. Sci. 53, 1206–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kosaka, T. et al. Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate 67, 41–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Noguchi, R. et al. Synergistic inhibitory effect of gemcitabine and angiotensin type-1 receptor blocker, losartan, on murine pancreatic tumor growth via anti-angiogenic activities. Oncol. Rep. 22, 355–360 (2009).

    CAS  PubMed  Google Scholar 

  131. Wang, L. et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers on lymphangiogenesis of gastric cancer in a nude mouse model. Chin. Med. J. 121, 2167–2171 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Yoshiji, H. et al. The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin. Cancer Res. 7, 1073–1078 (2001).

    CAS  PubMed  Google Scholar 

  133. Clere, N. et al. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int. J. Cancer 127, 2279–2291 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719 (1986).

    Article  CAS  PubMed  Google Scholar 

  135. Gallagher, P. E. & Tallant, E. A. Inhibition of human lung cancer cell growth by angiotensin-(1–7). Carcinogenesis 25, 2045–2052 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Soto-Pantoja, D. R., Menon, J., Gallagher, P. E. & Tallant, E. A. Angiotensin-(1–7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol. Cancer Ther. 8, 1676–1683 (2009). This study demonstrated that treatment of a xenograft model of lung cancer with Ang1–7 results in decreased angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Menon, J. et al. Angiotensin-(1–7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res. 67, 2809–2815 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Ermert, L., Dierkes, C. & Ermert, M. Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clin. Cancer Res. 9, 1604–1610 (2003).

    CAS  PubMed  Google Scholar 

  139. Huang, M. et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58, 1208–1216 (1998).

    CAS  PubMed  Google Scholar 

  140. Garrido, A. M. & Griendling, K. K. NADPH oxidases and angiotensin II receptor signaling. Mol. Cell. Endocrinol. 302, 148–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Touyz, R. M., Yao, G., Viel, E., Amiri, F. & Schiffrin, E. L. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J. Hypertens. 22, 1141–1149 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Taniyama, Y. et al. Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 287, C494–C499 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Touyz, R. M. et al. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81, 159–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Ushio-Fukai, M. et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22699–22704 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Fruehauf, J. P. & Meyskens, F. L. Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Fukui, T. et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ. Res. 80, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Landmesser, U. et al. Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40, 511–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Rajagopalan, S. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Virdis, A., Neves, M. F., Amiri, F., Touyz, R. M. & Schiffrin, E. L. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J. Hypertens. 22, 535–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Uemura, H. et al. Angiotensin II induces oxidative stress in prostate cancer. Mol. Cancer Res. 6, 250–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Celerier, J., Cruz, A., Lamande, N., Gasc, J. M. & Corvol, P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension 39, 224–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Bouquet, C. et al. Suppression of angiogenesis, tumor growth, and metastasis by adenovirus-mediated gene transfer of human angiotensinogen. Mol. Ther. 14, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Vincent, F. et al. Angiotensinogen delays angiogenesis and tumor growth of hepatocarcinoma in transgenic mice. Cancer Res. 69, 2853–2860 (2009). These authors determined that overexpression of human AGT in a transgenic mouse model of hepatocellular carcinoma results in increased survival and decreased tumour angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  154. Chisi, J. E. et al. Captopril inhibits in vitro and in vivo the proliferation of primitive haematopoietic cells induced into cell cycle by cytotoxic drug administration or irradiation but has no effect on myeloid leukaemia cell proliferation. Br. J. Haematol. 109, 563–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. De la Iglesia Iñigo, S. et al. Induction of apoptosis in leukemic cell lines treated with captopril, trandolapril and losartan: a new role in the treatment of leukaemia for these agents. Leuk. Res. 33, 810–816 (2009).

    Article  PubMed  CAS  Google Scholar 

  156. Hii, S. I. et al. Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma. Br. J. Cancer 77, 880–883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Isobe, A. et al. Dual repressive effect of angiotensin II-type 1 receptor blocker telmisartan on angiotensin II-induced and estradiol-induced uterine leiomyoma cell proliferation. Hum. Reprod. 23, 440–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Muscella, A., Greco, S., Elia, M. G., Storelli, C. & Marsigliante, S. Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J. Endocrinol. 173, 315–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Muscella, A., Greco, S., Elia, M. G., Storelli, C. & Marsigliante, S. PKC-zeta is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J. Cell Physiol. 197, 61–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Greco, S. et al. Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. J. Cell. Physiol. 196, 370–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Itabashi, H. et al. Angiotensin II and epidermal growth factor receptor cross-talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines. Hepatol. Res. 38, 601–613 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Teranishi, J. et al. Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells. Prostate 68, 1666–1673 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Uemura, H. et al. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol. Cancer Ther. 2, 1139–1147 (2003).

    CAS  PubMed  Google Scholar 

  164. Arrieta, O. et al. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br. J. Cancer 92, 1247–1252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhao, Y. et al. Angiotensin II / angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway. J. Cell. Physiol. (2010).

  166. Zhou, L. et al. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J. Exp. Med. 217, 123–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Zhao, Y. et al. Angiotensin II suppresses adriamycin-induced apoptosis through activation of phosphatidylinositol 3-kinase/Akt signaling in human breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai) 40, 304–310 (2008).

    Article  CAS  Google Scholar 

  168. Li, X., Zhang, H., Soledad-Conrad, V., Zhuang, J. & Uhal, B. D. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L501–L507 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Papp, M., Li, X., Zhuang, J., Wang, R. & Uhal, B. D. Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L713–L718 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Wang, R. et al. Apoptosis of lung epithelial cells in response to TNF-α requires angiotensin II generation de novo. J. Cell. Physiol. 185, 253–259 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Li, H. et al. Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells. Mol. Cancer Ther. 8, 3255–3265 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Pickel, L. et al. Overexpression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol. Ther. 9, 277–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Neo, J. H. et al. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer 10, 134 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Otake, A. H. et al. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother. Pharmacol. 66, 79–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Rivera, E., Arrieta, O., Guevara, P., Duarte-Rojo, A. & Sotelo, J. AT1 receptor is present in glioma cells; its blockage reduces the growth of rat glioma. Br. J. Cancer 85, 1396–1399 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Volpert, O. V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J. Clin. Invest. 98, 671–679 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Uemura, H. et al. Pilot study of angiotensin II receptor blocker in advanced hormone-refractory prostate cancer. Int. J. Clin. Oncol. 10, 405–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Petty, W. J. et al. Phase I and pharmacokinetic study of angiotensin-(1–7), an endogenous antiangiogenic hormone. Clin. Cancer Res. 15, 7398–7404 (2009). A description of a Phase I clinical trial treating patients with advanced solid tumours that are refractory to standard therapies with Ang1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Luque, M. et al. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1–7) in essential hypertension. J. Hypertens. 14, 799–805 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Moscarelli, L. et al. Keratinocyte cancer prevention with ACE inhibitors, angiotensin receptor blockers or their combination in renal transplant recipients. Clin. Nephrol. 73, 439–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Fryzek, J. P. et al. A cohort study of antihypertensive medication use and breast cancer among Danish women. Breast Cancer Res. Treat. 97, 231–236 (2006).

    Article  PubMed  Google Scholar 

  182. Li, C. I. et al. Relation between use of antihypertensive medications and risk of breast carcinoma among women ages 65–79 years. Cancer 98, 1504–1513 (2003).

    Article  PubMed  Google Scholar 

  183. Meier, C. R., Derby, L. E., Jick, S. S. & Jick, H. Angiotensin-converting enzyme inhibitors, calcium channel blockers, and breast cancer. Arch. Intern. Med. 160, 349–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Perron, L., Bairati, I., Harel, F. & Meyer, F. Antihypertensive drug use and the risk of prostate cancer (Canada). Cancer Causes Control 15, 535–541 (2004).

    Article  PubMed  Google Scholar 

  185. Sipahi, I., Debanne, S. M., Rowland, D. Y., Simon, D. I. & Fang, J. C. Angiotensin-receptor blockade and risk of cancer: μ-analysis of randomised controlled trials. Lancet Oncol. 11, 627–636 (2010). This study found a modest association between ARB use and an increased risk of diagnosis of a new cancer after carrying out a meta-analysis of randomized controlled trials of ARBs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Timmermans, P. B. Angiotensin II receptor antagonists: an emerging new class of cardiovascular therapeutics. Hypertens. Res. 22, 147–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Arora, P., Cuevas, B. D., Russo, A., Johnson, G. L. & Trejo, J. Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 27, 4434–4445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gschwind, A., Hart, S., Fischer, O. M. & Ullrich, A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J. 22, 2411–2421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gschwind, A., Prenzel, N. & Ullrich, A. Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res. 62, 6329–6336 (2002).

    CAS  PubMed  Google Scholar 

  190. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Suzuki, Y. et al. Inflammation and angiotensin II. Int. J. Biochem. Cell Biol. 35, 881–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Ino, K. et al. Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br. J. Cancer 94, 552–560 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kikkawa, F. et al. Activation of invasiveness of cervical carcinoma cells by angiotensin II. Am. J. Obstet. Gynecol. 190, 1258–1263 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Inwang, E. R. et al. Angiotensin II type 1 receptor expression in human breast tissues. Br. J. Cancer 75, 1279–1283 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tahmasebi, M., Barker, S., Puddefoot, J. R. & Vinson, G. P. Localisation of renin-angiotensin system (RAS) components in breast. Br. J. Cancer 95, 67–74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chow, L. et al. Functional angiotensin II type 2 receptors inhibit growth factor signaling in LNCaP and PC3 prostate cancer cell lines. Prostate 68, 651–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Louis, S. N. et al. Appearance of angiotensin II expression in non-basal epithelial cells is an early feature of malignant change in human prostate. Cancer Detect. Prev. 31, 391–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Marsigliante, S. et al. AT1 angiotensin II receptor subtype in the human larynx and squamous laryngeal carcinoma. Cancer Lett. 110, 19–27 (1996).

    Article  CAS  PubMed  Google Scholar 

  199. Takeda, H. & Kondo, S. Differences between squamous cell carcinoma and keratoacanthoma in angiotensin type-1 receptor expression. Am. J. Pathol. 158, 1633–1637 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Koh, W. P. et al. Angiotensin I-converting enzyme (ACE) gene polymorphism and breast cancer risk among Chinese women in Singapore. Cancer Res. 63, 573–578 (2003).

    CAS  PubMed  Google Scholar 

  201. Gonzalez-Zuloeta Ladd, A. M. et al. Angiotensin-converting enzyme gene insertion/deletion polymorphism and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 14, 2143–2146 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Haiman, C. A., Henderson, S. O., Bretsky, P., Kolonel, L. N. & Henderson, B. E. Genetic variation in angiotensin I-converting enzyme (ACE) and breast cancer risk: the multiethnic cohort. Cancer Res. 63, 6984–6987 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologise to those authors whose work is not cited because of space limitations. R.D.H. and W.G.T. are funded through Grants and Fellowships from the National Health and Medical Research Council of Australia, Cancer Council of Victoria, and the Victorian Breast Cancer Consortium, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Walter G. Thomas or Ross D. Hannan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Examples of RAS component expression in human cancer tissues and cell lines (PDF 242 kb)

Related links

Related links

DATABASES

ClinicalTrials.gov 

NCT00471562

National Cancer Institute Drug Dictionary 

candesartan

captopril

lisinopril

perindopril

NCBI SNP database 

snprs5186

rs1799752

FURTHER INFORMATION

Walter G. Thomas's homepage

Broad Cancer Institute Tumorscape

International Cancer Genome Consortium

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, A., Thomas, W. & Hannan, R. The renin–angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10, 745–759 (2010). https://doi.org/10.1038/nrc2945

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing