Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Walls around tumours — why plants do not develop cancer

Abstract

In plants, as in animals, most cells that constitute the organism limit their reproductive potential in order to provide collective support for the immortal germ line. And, as in animals, the mechanisms that restrict the proliferation of somatic cells in plants can fail, leading to tumours. There are intriguing similarities in tumorigenesis between plants and animals, including the involvement of the retinoblastoma pathway as well as overlap with mechanisms that are used for stem cell maintenance. However, plant tumours are less frequent and are not as lethal as those in animals. We argue that fundamental differences between plant and animal development make it much more difficult for individual plant cells to escape communal controls.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plant tumours and tumour-like growths.
Figure 2: Rb pathway in plants.
Figure 3: MYB orthologues regulate mitotic gene expression.
Figure 4: Role of auxin, cytokinin and RBR in plant stem cell niches.

Similar content being viewed by others

References

  1. Harashima, H. & Schnittger, A. The integration of cell division, growth and differentiation. Curr. Opin. Plant Biol. 13, 66–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Inze, D. & De Veylder, L. Cell cycle regulation in plant development. Annu. Rev. Genet. 40, 77–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. de Jager, S. M., Maughan, S., Dewitte, W., Scofield, S. & Murray, J. A. The developmental context of cell-cycle control in plants. Semin. Cell Dev. Biol. 16, 385–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Meyerowitz, E. M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, E. & Townsend, C. A plant-tumor of bacterial orgin. Science 25, 671–673 (1907).

    Article  CAS  PubMed  Google Scholar 

  6. Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Escobar, M. A. & Dandekar, A. M. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci. 8, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nester, E., Gordon, M., Amasino, R. & Yanofsky, M. Crown gall: a molecular and physiological analysis. Annu. Rev. Plant Physiol. 35, 387–413 (1984).

    Article  CAS  Google Scholar 

  9. Matveeva, T. V., Lutova, L. A. & Nester, I. Tumor formation in plants. Genetika 37, 1188–1197 (2001) (in Russian).

    CAS  PubMed  Google Scholar 

  10. Lee, C. W. et al. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948–2962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wachter, R. et al. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol. 133, 1024–1037 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ullrich, C. I. & Aloni, R. Vascularization is a general requirement for growth of plant and animal tumours. J. Exp. Bot. 51, 1951–1960 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson, O. & Olsson, O. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol. Plant. 100, 463–473 (1997).

    Article  CAS  Google Scholar 

  14. MacGregor, A. N. & Alexander, M. Formation of tumor-like structures on legume roots by Rhizobium. J. Bacteriol. 105, 728–732 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tirichine, L. et al. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315, 104–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Pertry, I. et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl Acad. Sci. USA 106, 929–934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goethals, K., Vereecke, D., Jaziri, M., Van Montagu, M. & Holsters, M. Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 39, 27–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Espinoza, A. D., Garcia-Pedrajas, M. D. & Gold, S. E. The Ustilaginales as plant pests and model systems. Fungal Genet. Biol. 35, 1–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Basse, C. W. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol. 138, 1774–1784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reineke, G. et al. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9, 339–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skibbe, D. S., Doehlemann, G., Fernandes, J. & Walbot, V. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328, 89–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Latham, J. R., Saunders, K., Pinner, M. S. & Stanley, J. Induction of plant cell division by beet curly top virus gene C4. Plant J. 11, 1273–1283 (1997).

    Article  CAS  Google Scholar 

  23. Park, J. et al. Altered cell shapes, hyperplasia, and secondary growth in Arabidopsis caused by beet curly top geminivirus infection. Mol. Cells 17, 117–124 (2004).

    CAS  PubMed  Google Scholar 

  24. Chen, L. F. et al. A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a β-satellite. Mol. Plant Pathol. 10, 415–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Vanderschuren, H., Stupak, M., Futterer, J., Gruissem, W. & Zhang, P. Engineering resistance to geminiviruses-review and perspectives. Plant Biotechnol. J. 5, 207–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mills-Lujan, K. & Deom, C. M. Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239, 95–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Qazi, J., Amin, I., Mansoor, S., Iqbal, M. J. & Briddon, R. W. Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res. 128, 135–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sharp, W. R. & Gunckel, J. E. Physiological comparisons of pith callus with crown-gall and genetic tumors of Nicotiana glauca, N. langsdorffii, and N. glauca-langsdorffii grown in vitro. I. Tumor induction and proliferation. Plant Physiol. 44, 1069–1072 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aoki, S. & Syno, K. Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc. Natl Acad. Sci. USA 96, 13229–13234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schartl, M. Evolution of Xmrk: an oncogene, but also a speciation gene? Bioessays 30, 822–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. White, P. R. Neoplastic growth in plants. Q. Rev. Biol. 26, 1–16 (1951).

    Article  CAS  PubMed  Google Scholar 

  33. Wigge, P. A. & Weigel, D. Arabidopsis genome: life without notch. Curr. Biol. 11, R112–R114 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Moubayidin, L., Di Mambro, R. & Sabatini, S. Cytokinin-auxin crosstalk. Trends Plant Sci. 14, 557–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Santiago, J. et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Wolters, H. & Jurgens, G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Rev. Genet. 10, 305–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Galinha, C. et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mizukami, Y. & Fischer, R. L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl Acad. Sci. USA 97, 942–947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inoue, T. et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409, 1060–1063 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Werner, T. et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gordon, S. P., Chickarmane, V. S., Ohno, C. & Meyerowitz, E. M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl Acad. Sci. USA 106, 16529–16534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riou-Khamlichi, C., Huntley, R., Jacqmard, A. & Murray, J. A. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283, 1541–1544 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Dewitte, W. et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc. Natl Acad. Sci. USA 104, 14537–14542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ascencio-Ibanez, J. T. et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148, 436–454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Rev. Cancer 8, 671–682 (2008).

    Article  CAS  Google Scholar 

  49. Fang, S. C., de los Reyes, C. & Umen, J. G. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet. 2, e167 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ebel, C., Mariconti, L. & Gruissem, W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429, 776–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wildwater, M. et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Park, J. A. et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Borghi, L. et al. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. Plant Cell 22, 1792–1811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. H. & Gutierrez, C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140, 67–80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jordan, C. V., Shen, W., Hanley-Bowdoin, L. K. & Robertson, D. N. Geminivirus-induced gene silencing of the tobacco retinoblastoma-related gene results in cell death and altered development. Plant Mol. Biol. 65, 163–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Bramsiepe, J. et al. Endoreplication controls cell fate maintenance. PLoS Genet. 6, e1000996 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mosquna, A., Katz, A., Shochat, S., Grafi, G. & Ohad, N. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol. Genet. Genomics 271, 651–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Johnston, A. J., Matveeva, E., Kirioukhova, O., Grossniklaus, U. & Gruissem, W. A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr. Biol. 18, 1680–1686 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong, L. J. et al. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sozzani, R. et al. Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol. 140, 1355–1366 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rossignol, P. et al. AtE2F-a and AtDP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Mol. Genet. Genomics 266, 995–1003 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. De Veylder, L. et al. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J. 21, 1360–1368 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature Rev. Cancer 9, 785–797 (2009).

    Article  CAS  Google Scholar 

  65. del Pozo, J. C., Diaz-Trivino, S., Cisneros, N. & Gutierrez, C. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18, 2224–2235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kosugi, S. & Ohashi, Y. E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form. J. Biol. Chem. 277, 16553–16558 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Mariconti, L. et al. The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J. Biol. Chem. 277, 9911–9919 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Gutierrez, C. DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792–799 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arguello-Astorga, G. et al. A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J. Virol. 78, 4817–4826 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McGivern, D. R., Findlay, K. C., Montague, N. P. & Boulton, M. I. An intact RBR-binding motif is not required for infectivity of Maize streak virus in cereals, but is required for invasion of mesophyll cells. J. Gen. Virol. 86, 797–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Xie, Q., Sanz-Burgos, A. P., Hannon, G. J. & Gutierrez, C. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15, 4900–4908 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakagami, H., Kawamura, K., Sugisaka, K., Sekine, M. & Shinmyo, A. Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14, 1847–1857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vandepoele, K. et al. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903–916 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qi, R. & John, P. C. Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth. Plant Physiol. 144, 1587–1597 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dewitte, W. et al. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15, 79–92 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koroleva, O. A. et al. CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16, 2364–2379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Menges, M., Samland, A. K., Planchais, S. & Murray, J. A. The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18, 893–906 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schnittger, A. et al. Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes. Proc. Natl Acad. Sci. USA 99, 6410–6415 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, H., Fowke, L. C. & Crosby, W. L. A plant cyclin-dependent kinase inhibitor gene. Nature 386, 451–452 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, Y., Wang, H., Gilmer, S., Whitwill, S. & Fowke, L. C. Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta 216, 604–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Verkest, A. et al. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17, 1723–1736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakayama, K. Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. Bioessays 20, 1020–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Seluanov, A. et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc. Natl Acad. Sci. USA 106, 19352–19357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Churchman, M. L. et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18, 3145–3157 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ormenese, S. et al. Analysis of the spatial expression pattern of seven Kip related proteins (KRPs) in the shoot apex of Arabidopsis thaliana. Ann. Bot. 93, 575–580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Doerner, P., Jorgensen, J. E., You, R., Steppuhn, J. & Lamb, C. Control of root growth and development by cyclin expression. Nature 380, 520–523 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Doonan, J. & Hunt, T. Cell cycle. Why don't plants get cancer? Nature 380, 481–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Ito, M. et al. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13, 1891–1905 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ma, Q. et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol. 150, 244–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Henriques, R. et al. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J. 29, 2979–2993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sablowski, R. Plant and animal stem cells: conceptually similar, molecularly distinct? Trends Cell Biol. 14, 605–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nature Rev. Mol. Cell Biol. 8, 345–354 (2007).

    Article  CAS  Google Scholar 

  95. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Ye, Z. H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Yanai, O. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Jasinski, S. et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15, 1560–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Shani, E., Yanai, O. & Ori, N. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Sabatini, S. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Dello Ioio, R. et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17, 678–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Skoog, F. & Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–131 (1957).

    CAS  PubMed  Google Scholar 

  104. Halperin, W. Morphogenesis in cell cultures. Annu. Rev. Plant Physiol. 20, 395–418 (1969).

    Article  Google Scholar 

  105. Cary, A. J., Che, P. & Howell, S. H. Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J. 32, 867–877 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539–3548 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Wyrzykowska, J., Schorderet, M., Pien, S., Gruissem, W. & Fleming, A. J. Induction of differentiation in the shoot apical meristem by transient overexpression of a retinoblastoma-related protein. Plant Physiol. 141, 1338–1348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J. & Terzis, A. J. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Rev. Cancer 5, 899–904 (2005).

    Article  CAS  Google Scholar 

  110. Kupila, S. Crown gall as an anatomical and cytological problem: a review. Cancer Res. 23, 497–509 (1963).

    CAS  PubMed  Google Scholar 

  111. Hagen, G. L., Sparrow, A. H. & Gunckel, J. E. Morphology and histology of tumor types induced by X, γ, and β irradiation of a tobacco hybrid. Am. J. Bot. 48, 691–699 (1961).

    Article  Google Scholar 

  112. Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57, 626–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Birnbaum, K. D. & Sanchez Alvarado, A. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fulcher, N. & Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl Acad. Sci. USA 106, 20984–20988 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sabelli, P. A. & Larkins, B. A. Grasses like mammals? Redundancy and compensatory regulation within the retinoblastoma protein family. Cell Cycle 5, 352–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Sabelli, P. A. et al. Positive regulation of minichromosome maintenance gene expression, DNA replication, and cell transformation by a plant retinoblastoma gene. Proc. Natl Acad. Sci. USA 106, 4042–4047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krupkova, E. & Schmulling, T. Developmental consequences of the tumorous shoot development1 mutation, a novel allele of the cellulose-synthesizing KORRIGAN1 gene. Plant Mol. Biol. 71, 641–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Krupkova, E., Immerzeel, P., Pauly, M. & Schmulling, T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J. 50, 735–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Jacobs, T. Why do plant cells divide? Plant Cell 9, 1021–1029 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Beemster, G. T., Fiorani, F. & Inze, D. Cell cycle: the key to plant growth control? Trends Plant Sci. 8, 154–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Huntley, R. et al. The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S. regulators and plant cyclin D (CycD) proteins. Plant Mol. Biol. 37, 155–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Kato, K. et al. Preferential up-regulation of G2/M phase-specific genes by overexpression of the hyperactive form of NtmybA2 lacking its negative regulation domain in tobacco BY-2 cells. Plant Physiol. 149, 1945–1957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Haga, N. et al. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134, 1101–1110 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Pignocchi, C. et al. ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell 21, 90–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Ioio, R. D. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Sakakibara (Riken Institute, Japan), R. Kahmann, (Max-Planck-Institut (MPI), Marburg, Germany) and R. Briddon (National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan) for supplying images of plants with pathogen-induced proliferative defects; and L. Hanley-Bowdoin, M. Ito, C. Lloyd and P. Wigge for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John H. Doonan's homepage

Glossary

Auxin

A class of plant hormones (especially INDOLE-3-ACETIC ACID (IAA) and similar compounds) that control cell division, cell expansion and differentiation.

Cambium

A population of stem cells that sustain the production of vascular tissues in higher plants. They allow the stem and the root to increase in diameter by accumulating vascular cells (which make up the bulk of tree trunks, for example).

Crown gall

A tumour caused by Agrobacterium and often found on the crown (the root–stem junction) of plants.

Cytokinin

A group of adenine-related plant hormones that regulate cell division and differentiation.

Endocycle

A cycle of DNA replication without mitosis or cell division, resulting in increased nuclear DNA content.

Endoreduplication

The re-replication of DNA without an intervening mitosis. This is often associated with cell differentiation.

Endosperm

The seed tissue that surrounds, protects and provides nutrients for the embryo.

Gametophyte

The multicellular haploid stage of the plant life cycle that produces the gametes. In flowering plants, the male gametophyte is known as pollen, and the female gametophyte is the embryo sac.

Geminivirus

A group of single-stranded DNA viruses, characterized by gemiate caspid. They infect a wide range of plants and are usually vectored by insects.

Meristem

A group of self-renewing, undifferentiated cells that sustain the production of new plant tissues.

Neoplasia

Cell proliferation outside normal developmental control.

Pericycle

A cell layer that surrounds the central vascular cylinder of the stem and roots and that initiates the development of new lateral roots.

Stem cell niche

A region in a tissue where stem cells are maintained, includes cells that produce a short-range stem cell maintenance signal and the surrounding region where the signal is able to maintain stem cell identity. Although plants and animals use different signals to maintain stem cells, the maintenance of stem cells within restricted microenvironments is a comparable feature in both kingdoms.

Symbiont

One of the partners in a mutually beneficial relationship between two species.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doonan, J., Sablowski, R. Walls around tumours — why plants do not develop cancer. Nat Rev Cancer 10, 794–802 (2010). https://doi.org/10.1038/nrc2942

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2942

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer