Abstract
Bacterial therapies possess many unique mechanisms for treating cancer that are unachievable with standard methods. Bacteria can specifically target tumours, actively penetrate tissue, are easily detected and can controllably induce cytotoxicity. Over the past decade, Salmonella, Clostridium and other genera have been shown to control tumour growth and promote survival in animal models. In this Innovation article I propose that synthetic biology techniques can be used to solve many of the key challenges that are associated with bacterial therapies, such as toxicity, stability and efficiency, and can be used to tune their beneficial features, allowing the engineering of 'perfect' cancer therapies.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



Change history
16 December 2010
On page 787 of this article the Salmonella strain VNP20009 was incorrectly referred to as VNP200009.
References
- 1
Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nature Rev. Cancer 6, 583–592 (2006).
- 2
St. Jean, A. T., Zhang, M. M. & Forbes, N. S. Bacterial therapies: completing the cancer treatment toolbox. Curr. Opin. Biotechnol. 19, 511–517 (2008).
- 3
Jain, R. K. The next frontier of molecular medicine: delivery of therapeutics. Nature Med. 4, 655–657 (1998).
- 4
Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).
- 5
Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature Biotech. 22, 313–320 (2004).
- 6
Parker, R. C., Plummer, H. C., Siebenmann, C. O. & Chapman, M. G. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc. Soc. Exp. Biol. Med. 66, 461–467 (1947).
- 7
Malmgren, R. A. & Flanigan, C. C. Localization of the vegetative form of Clostridium tetani in mouse tumor following intravenous spore administration. Cancer Res. 15, 473–478 (1955).
- 8
Kohwi, Y., Imai, K., Tamura, Z. & Hashimoto, Y. Antitumor effect of Bifidobacterium infantis in mice. Gann 69, 613–618 (1978).
- 9
Bhatnagar, P. K., Awasthi, A., Nomellini, J. F., Smit, J. & Suresh, M. R. Anti-tumor effects of the bacterium caulobacter crescentus in murine tumor models. Cancer Biol. Ther. 5, 485–491 (2006).
- 10
Pan, Z. K., Weiskirch, L. M. & Paterson, Y. Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res. 59, 5264–5269 (1999).
- 11
Kim, S. H., Castro, F., Paterson, Y. & Gravekamp, C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 69, 5860–5866 (2009).
- 12
Arakawa, M., Sugiura, K., Reilly, H. C. & Stock, C. C. Oncolytic effect of Proteus mirabilis upon tumor-bearing animals. II. Effect on transplantable mouse and rat tumors. Gann 59, 117–122 (1968).
- 13
Maletzki, C., Linnebacher, M., Kreikemeyer, B. & Emmrich, J. Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut 57, 483–491 (2008).
- 14
Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).
- 15
Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol. Bioeng. 94, 710–721 (2006).
- 16
Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007).
- 17
Nguyen, V. H. et al. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 70, 18–23 (2010).
- 18
Jiang, S. N. et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol. Ther. 18, 635–642 (2010).
- 19
Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).
- 20
Loeffler, M., Le'Negrate, G., Krajewska, M. & Reed, J. C. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc. Natl Acad. Sci. USA 104, 12879–12883 (2007).
- 21
Loeffler, M., Le'Negrate, G., Krajewska, M. & Reed, J. C. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol. Immunother. 58, 769–775 (2009).
- 22
Gentschev, I. et al. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice. BMC Cancer 5, 15 (2005).
- 23
Ganai, S., Arenas, R. B. & Forbes, N. S. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer 101, 1683–1691 (2009).
- 24
Loeffler, M., Le'Negrate, G., Krajewska, M. & Reed, J. C. Inhibition of tumor growth using Salmonella expressing Fas ligand. J. Natl Cancer Inst. 100, 1113–1116 (2008).
- 25
Theys, J. et al. Stable Escherichia coli–Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor α. Appl. Environ. Microbiol. 65, 4295–4300 (1999).
- 26
Nuyts, S. et al. Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res. 21, 857–861 (2001).
- 27
Nuyts, S. et al. Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8, 1197–1201 (2001).
- 28
Loessner, H. et al. Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell. Microbiol. 9, 1529–1537 (2007).
- 29
Stritzker, J. et al. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297, 151–162 (2007).
- 30
Nuyts, S. et al. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat. Res. 155, 716–723 (2001).
- 31
Zhao, M. et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl Acad. Sci. USA 102, 755–760 (2005).
- 32
Hoffman, R. M. & Zhao, M. Whole-body imaging of bacterial infection and antibiotic response. Nature Protoc. 1, 2988–2994 (2006).
- 33
Benoit, M. R. et al. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin. Cancer Res. 15, 5170–5177 (2009).
- 34
Tjuvajev, J. et al. Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET™) for diagnostic imaging. J. Control. Release 74, 313–315 (2001).
- 35
Soghomonyan, S. A. et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 12, 101–108 (2005).
- 36
Brader, P. et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin. Cancer Res. 14, 2295–2302 (2008).
- 37
Nagakura, C. et al. Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer Res. 29, 1873–1878 (2009).
- 38
Lambin, P. et al. Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe 4, 183–188 (1998).
- 39
Minton, N. P. Clostridia in cancer therapy. Nature Rev. Microbiol. 1, 237–242 (2003).
- 40
Forbes, N. S., Munn, L. L., Fukumura, D. & Jain, R. K. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 63, 5188–5193 (2003).
- 41
Leschner, S. et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS ONE 4, e6692 (2009).
- 42
Sznol, M., Lin, S. L., Bermudes, D., Zheng, L. M. & King, I. Use of preferentially replicating bacteria for the treatment of cancer. J. Clin. Invest. 105, 1027–1030 (2000).
- 43
Clairmont, C. et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J. Infect. Dis. 181, 1996–2002 (2000).
- 44
Lee, C. H., Wu, C. L. & Shiau, A. L. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6, 1382–1393 (2004).
- 45
Zheng, L. M. et al. Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol. Res. 12, 127–135 (2000).
- 46
Low, K. B. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature Biotech. 17, 37–41 (1999).
- 47
Theys, J. et al. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br. J. Cancer 95, 1212–1219 (2006).
- 48
Zhao, M. et al. Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 66, 7647–7652 (2006).
- 49
Streilein, J. W. Unraveling immune privilege. Science 270, 1158–1159 (1995).
- 50
Westphal, K., Leschner, S., Jablonska, J., Loessner, H. & Weiss, S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer Res. 68, 2952–2960 (2008).
- 51
Lee, C. H., Wu, C. L. & Shiau, A. L. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12, 175–184 (2005).
- 52
Lee, C. H., Wu, C. L., Tai, Y. S. & Shiau, A. L. Systemic administration of attenuated Salmonella choleraesuis in combination with cisplatin for cancer therapy. Mol. Ther. 11, 707–716 (2005).
- 53
Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).
- 54
Heimann, D. M. & Rosenberg, S. A. Continuous intravenous administration of live genetically modified Salmonella typhimurium in patients with metastatic melanoma. J. Immunother. 26, 179–180 (2003).
- 55
Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).
- 56
Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744 (2003).
- 57
Hall, S. S. A Commotion in the Blood: Life, Death, and the Immune System (Henry Holt, New York, 1997).
- 58
Coley, W. B. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).
- 59
Nauts, H. C., Swift, W. E. & Coley, B. L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed in the light of modern research. Cancer Res. 6, 205–216 (1946).
- 60
Fensterle, J. et al. Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunitB. Cancer Gene Ther. 15, 85–93 (2008).
- 61
Mottram, J. C. Factors of importance in radiosensitivity of tumors. Br. J. Radiol. 9, 606–614 (1936).
- 62
Möse, J. R. & Möse, G. Oncogenesis by clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res. 24, 212–216 (1964).
- 63
Carey, R. W., Holland, J. F., Whang, H. Y., Neter, E. & Bryant, B. Clostridial oncolysis in man. Eur. J. Cancer 3, 37–46 (1967).
- 64
Lee, C. H., Wu, C. L. & Shiau, A. L. Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int. J. Cancer 122, 930–935 (2008).
- 65
Thamm, D. H. et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: Phase I evaluation. Clin. Cancer Res. 11, 4827–4834 (2005).
- 66
Jia, L. J. et al. Oral delivery of tumor-targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci. 98, 1107–1112 (2007).
- 67
Chen, G. et al. Oral delivery of tumor-targeting Salmonella exhibits promising therapeutic efficacy and low toxicity. Cancer Sci. 100, 2437–2443 (2009).
- 68
Bermudes, D., Low, B. & Pawelek, J. Tumor-targeted Salmonella. Highly selective delivery vectors. Adv. Exp. Med. Biol. 465, 57–63 (2000).
- 69
Hedley, D., Ogilvie, L. & Springer, C. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nature Rev. Cancer 7, 870–879 (2007).
- 70
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nature Rev. Cancer 4, 437–447 (2004).
- 71
Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5, 157–163 (1999).
- 72
Barbe, S. et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS Microbiol. Lett. 246, 67–73 (2005).
- 73
Saltzman, D. A. et al. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother. Radiopharm. 11, 145–153 (1996).
- 74
Loeffler, M., Le'Negrate, G., Krajewska, M. & Reed, J. C. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther. 15, 787–794 (2008).
- 75
Sorenson, B. S., Banton, K. L., Frykman, N. L., Leonard, A. S. & Saltzman, D. A. Attenuated Salmonella typhimurium with interleukin 2 gene prevents the establishment of pulmonary metastases in a model of osteosarcoma. J. Pediatr. Surg. 43, 1153–1158 (2008).
- 76
Sorenson, B. S., Banton, K. L., Frykman, N. L., Leonard, A. S. & Saltzman, D. A. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma. Clin. Orthop. Relat. Res. 466, 1285–1291 (2008).
- 77
Al-Ramadi, B. K. et al. Potent anti-tumor activity of systemically-administered IL-2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clin. Immunol. 130, 89–97 (2009).
- 78
Barnett, S. J. et al. Attenuated Salmonella typhimurium invades and decreases tumor burden in neuroblastoma. J. Pediatr. Surg. 40, 993–997 (2005).
- 79
Feltis, B. A. et al. Liver and circulating NK1.1+CD3- cells are increased in infection with attenuated Salmonella typhimurium and are associated with reduced tumor in murine liver cancer. J. Surg. Res. 107, 101–107 (2002).
- 80
Saltzman, D. A. et al. Antitumor mechanisms of attenuated Salmonella typhimurium containing the gene for human interleukin-2: a novel antitumor agent? J. Pediatr. Surg. 32, 301–306 (1997).
- 81
Lee, S. R. et al. Multi-immunogenic outer membrane vesicles derived from a MsbB-deficient Salmonella enterica serovar typhimurium mutant. J. Microbiol. Biotechnol. 19, 1271–1279 (2009).
- 82
Nishikawa, H. et al. In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest. 116, 1946–1954 (2006).
- 83
Groot, A. J. et al. Functional antibodies produced by oncolytic clostridia. Biochem. Biophys. Res. Commun. 364, 985–989 (2007).
- 84
Sizemore, D. R., Branstrom, A. A. & Sadoff, J. C. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–302 (1995).
- 85
Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765–775 (1997).
- 86
Weiss, S. & Chakraborty, T. Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr. Opin. Biotechnol. 12, 467–472 (2001).
- 87
Palffy, R. et al. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 13, 101–105 (2006).
- 88
Fu, W., Chu, L., Han, X. W., Liu, X. Y. & Ren, D. M. Synergistic antitumoral effects of human telomerase reverse transcriptase-mediated dual-apoptosis-related gene vector delivered by orally attenuated Salmonella enterica serovar Typhimurium in murine tumor models. J. Gene Med. 10, 690–701 (2008).
- 89
Li, Y. H. et al. Prophylaxis of tumor through oral administration of IL-12 GM-CSF gene carried by live attenuated Salmonella. Chin. Sci. Bull. 46, 1107–1112 (2001).
- 90
Li, Y. H. et al. Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int. J. Cancer 94, 438–443 (2001).
- 91
Qi, H., Li, Y. H. & Zheng, S. B. Oral gene therapy via live attenuated Salmonella leads to tumor regression and survival prolongation in mice. Nan Fang Yi Ke Da Xue Xue Bao 26, 1738–1741 (2006).
- 92
Yoon, W. S., Choi, W. C., Sin, J. I. & Park, Y. K. Antitumor therapeutic effects of Salmonella typhimurium containing Flt3 ligand expression plasmids in melanoma-bearing mouse. Biotechnol. Lett. 29, 511–516 (2007).
- 93
Zuo, S. G. et al. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol. Pharm. Bull. 33, 174–182 (2010).
- 94
Feng, K. et al. Anti-angiogenesis effect on glioma of attenuated Salmonella typhimurium vaccine strain with flk-1 gene. J. Huazhong Univ. Sci. Technol. Med. Sci. 24, 389–391 (2004).
- 95
Chou, C. K., Hung., J. Y., Liu, J. C., Chen, C. T. & Hung., M. C. An attenuated Salmonella oral DNA vaccine prevents the growth of hepatocellular carcinoma and colon cancer that express α-fetoprotein. Cancer Gene Ther. 13, 746–752 (2006).
- 96
Zhang, L. et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67, 5859–5864 (2007).
- 97
Yang, N., Zhu, X., Chen, L., Li, S. & Ren, D. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer Biol. Ther. 7, 145–151 (2008).
- 98
Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
- 99
Royo, J. L. et al. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nature Methods 4, 937–942 (2007).
- 100
Nuyts, S. et al. Insertion or deletion of the Cheo box modifies radiation inducibility of Clostridium promoters. Appl. Environ. Microbiol. 67, 4464–4470 (2001).
- 101
Mengesha, A. et al. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella. Cancer Biol. Ther. 5, 1120–1128 (2006).
- 102
Strauch, K. L., Lenk, J. B., Gamble, B. L. & Miller, C. G. Oxygen regulation in Salmonella typhimurium. J. Bacteriol. 161, 673–680 (1985).
- 103
Arrach, N., Zhao, M., Porwollik, S., Hoffman, R. M. & McClelland, M. Salmonella promoters preferentially activated inside tumors. Cancer Res. 68, 4827–4832 (2008).
- 104
Min., J. J. et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol. Imaging Biol. 10, 54–61 (2008).
- 105
Min., J. J., Nguyen, V. H., Kim, H. J., Hong, Y. J. & Choy, H. E. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nature Protoc. 3, 629–636 (2008).
- 106
Cheng, C. M. et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther. 15, 393–401 (2008).
- 107
Gericke, D. & Engelbart, K. Oncolysis by Clostridia.II. Experiments on tumor spectrum with variety of Clostridia in combination with heavy metal. Cancer Res. 24, 217–221 (1964).
- 108
Dang, L. H. et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol. Ther. 3, 326–337 (2004).
- 109
Bettegowda, C. et al. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc. Natl Acad. Sci. USA 100, 15083–15088 (2003).
- 110
Cheong, I. et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science 314, 1308–1311 (2006).
- 111
Voigt, C. A. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17, 548–557 (2006).
- 112
Pfleger, B. F., Pitera, D. J., Smolke, C. D. & Keasling, J. D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature Biotech. 24, 1027–1032 (2006).
- 113
Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotech. 27, 946–950 (2009).
- 114
Ohl, M. E. & Miller, S. I. Salmonella: a model for bacterial pathogenesis. Annu. Rev. Med. 52, 259–274 (2001).
- 115
Engelbart, K. & Gericke, D. Oncolysis by Clostridia.V. Transplanted tumors of the hamster. Cancer Res. 24, 239–243 (1964).
- 116
Thiele, E. H., Boxer, G. E. & Arison, R. N. Oncolysis by Clostridia.III. Effects of Clostridia and chemotherapeutic agents on rodent tumors. Cancer Res. 24, 222–233 (1964).
- 117
Mohr, U., Boldingh, W. H., Behagel, H. A. & Emminger, A. Oncolysis by a new strain of Clostridium. Cancer Res. 32, 1122–1128 (1972).
- 118
Weibel, S., Stritzker, J., Eck, M., Goebel, W. & Szalay, A. A. Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment. Cell. Microbiol. 10, 1235–1248 (2008).
- 119
Luo, X. et al. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol. Res. 12, 501–508 (2001).
- 120
Rosenberg, S. A., Spiess, P. J. & Kleiner, D. E. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J. Immunother. 25, 218–225 (2002).
- 121
Zhao, M. et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc. Natl Acad. Sci. USA 104, 10170–10174 (2007).
- 122
Kimura, H. et al. Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif. 43, 41–48 (2010).
- 123
Jia, L. J. et al. Enhanced therapeutic effect by combination of tumor-targeting Salmonella and endostatin in murine melanoma model. Cancer Biol. Ther. 4, 840–845 (2005).
- 124
Platt, J. et al. Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur. J. Cancer 36, 2397–2402 (2000).
- 125
Shilling, D. A. et al. Salmonella typhimurium stimulation combined with tumour-derived heat shock proteins induces potent dendritic cell anti-tumour responses in a murine model. Clin. Exp. Immunol. 149, 109–116 (2007).
- 126
Al-Ramadi, B. K. et al. Attenuated bacteria as effectors in cancer immunotherapy. Ann. N. Y. Acad. Sci. 1138, 351–357 (2008).
- 127
Liu, S. C., Minton, N. P., Giaccia, A. J. & Brown, J. M. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9, 291–296 (2002).
- 128
Liu, S. C. et al. Optimized Clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA cross-linking agent PR-104. Cancer Res. 68, 7995–8003 (2008).
- 129
Dubois, L. et al. Efficacy of gene therapy-delivered cytosine deaminase is determined by enzymatic activity but not expression. Br. J. Cancer 96, 758–761 (2007).
- 130
Jazowiecka-Rakus, J. & Szala, S. Antitumour activity of Salmonella typhimurium VNP20047 in B16(F10) murine melanoma model. Acta Biochim. Pol. 51, 851–856 (2004).
- 131
Friedlos, F. et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin. Cancer Res. 14, 4259–4266 (2008).
- 132
Fu, W. et al. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2′-deoxyriboside via Salmonella against murine tumors. Cancer Gene Ther. 15, 474–484 (2008).
- 133
Fu, W., Lan, H. K., Liang, S. H., Gao, T. & Ren, D. M. Suicide gene/prodrug therapy using Salmonella-mediated delivery of Escherichia coli purine nucleoside phosphorylase gene and 6-methoxypurine 2′-deoxyriboside in murine mammary carcinoma 4T1 model. Cancer Sci. 99, 1172–1179 (2008).
- 134
Mei, S., Theys, J., Landuyt, W., Anne, J. & Lambin, P. Optimization of tumor-targeted gene delivery by engineered attenuated Salmonella typhimurium. Anticancer Res. 22, 3261–3266 (2002).
- 135
Hayashi, K. et al. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J. Cell. Biochem. 106, 992–998 (2009).
- 136
Hayashi, K. et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8, 870–875 (2009).
- 137
Dresselaers, T. et al. Non-invasive 19F MR spectroscopy of 5-fluorocytosine to 5-fluorouracil conversion by recombinant Salmonella in tumours. Br. J. Cancer 89, 1796–1801 (2003).
- 138
Heppner, F. & Mose, J. R. The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir. (Wien) 42, 123–125 (1978).
Acknowledgements
This work was partly supported by the US National Institutes of Health, National Cancer Institute grant CA120825.
Author information
Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Forbes, N. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10, 785–794 (2010). https://doi.org/10.1038/nrc2934
Published:
Issue Date:
Further reading
-
Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines
Advanced Drug Delivery Reviews (2021)
-
Bacteria-Mediated Synergistic Cancer Therapy: Small Microbiome Has a Big Hope
Nano-Micro Letters (2021)
-
Cell primitive-based biomimetic functional materials for enhanced cancer therapy
Chemical Society Reviews (2021)
-
Magnetospirillum magneticum as a Living Iron Chelator Induces TfR1 Upregulation and Decreases Cell Viability in Cancer Cells
International Journal of Molecular Sciences (2021)
-
A strategy for enhanced tumor targeting of photodynamic therapy based on Escherichia coli-driven drug delivery system
Science China Materials (2021)