Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis

Abstract

The RNA polymerase II (Pol II) elongation factor (ELL) was the first translocation partner of mixed lineage leukaemia (MLL) for which a biochemical function was determined. It was therefore proposed that the regulation of the elongation stage of transcription could be fundamental to MLL-based leukaemogenesis. Recent studies have identified ELL complexed with several of the translocation partners of MLL in a transcriptional super elongation complex (SEC). These studies provide evidence for the importance of the regulation of Pol II elongation in disease pathogenesis and suggest that MLL chimaeras function by licensing Pol II transcription elongation without the appropriate checkpoints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The subunit composition for the histone H3K4 methylases COMPASS and COMPASS-like complexes from yeast to human.
Figure 2: The most common MLL chimaeras found in acute leukaemia.
Figure 3: Licensed to elongate, a molecular mechanism for MLL-based leukaemogenesis.

Similar content being viewed by others

References

  1. Shilatifard, A., Lane, W. S., Jackson, K. W., Conaway, R. C. & Conaway, J. W. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 1873–1876 (1996).

    CAS  PubMed  Google Scholar 

  2. Shilatifard, A. Factors regulating the transcriptional elongation activity of RNA polymerase II. FASEB J. 12, 1437–1446 (1998).

    CAS  PubMed  Google Scholar 

  3. Meyer, C. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 23, 1490–1499 (2009).

    CAS  PubMed  Google Scholar 

  4. Krogan, N. J. et al. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277, 10753–10755 (2002).

    CAS  PubMed  Google Scholar 

  5. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl Acad. Sci. USA 98, 12902–12907 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    CAS  PubMed  Google Scholar 

  8. Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).

    CAS  PubMed  Google Scholar 

  9. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    CAS  PubMed  Google Scholar 

  10. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639–5649 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074–6085 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Y. et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. He, N. et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38, 428–438 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38, 439–451 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohan, M. et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 2, 113–118 (1992).

    CAS  PubMed  Google Scholar 

  18. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    CAS  PubMed  Google Scholar 

  19. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    CAS  PubMed  Google Scholar 

  20. Chessells, J. M. et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia 16, 776–784 (2002).

    CAS  PubMed  Google Scholar 

  21. Hilden, J. M. et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 108, 441–451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pieters, R. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370, 240–250 (2007).

    CAS  PubMed  Google Scholar 

  23. Tomizawa, D. et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 21, 2258–2263 (2007).

    CAS  PubMed  Google Scholar 

  24. van der Linden, M. H. et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 114, 3764–3768 (2009).

    CAS  PubMed  Google Scholar 

  25. Raimondi, S. C. et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 94, 3707–3716 (1999).

    CAS  PubMed  Google Scholar 

  26. Schoch, C. et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102, 2395–2402 (2003).

    CAS  PubMed  Google Scholar 

  27. Corral, J. et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85, 853–861 (1996).

    CAS  PubMed  Google Scholar 

  28. Rowley, J. D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998).

    CAS  PubMed  Google Scholar 

  29. So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    CAS  PubMed  Google Scholar 

  30. Martin, M. E. et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 4, 197–207 (2003).

    CAS  PubMed  Google Scholar 

  31. So, C. W., Lin, M., Ayton, P. M., Chen, E. H. & Cleary, M. L. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4, 99–110 (2003).

    CAS  PubMed  Google Scholar 

  32. Moghrabi, A. et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95–01 for children with acute lymphoblastic leukemia. Blood 109, 896–904 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Moricke, A. et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111, 4477–4489 (2008).

    PubMed  Google Scholar 

  34. Stark, B. et al. Classical and molecular cytogenetic abnormalities and outcome of childhood acute myeloid leukaemia: report from a referral centre in Israel. Br. J. Haematol. 126, 320–337 (2004).

    PubMed  Google Scholar 

  35. Krauter, J. et al. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J. Clin. Oncol. 27, 3000–3006 (2009).

    PubMed  Google Scholar 

  36. Lie, S. O. et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br. J. Haematol. 122, 217–225 (2003).

    PubMed  Google Scholar 

  37. Mrozek, K. et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood 90, 4532–4538 (1997).

    CAS  PubMed  Google Scholar 

  38. Rubnitz, J. E. et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J. Clin. Oncol. 20, 2302–2309 (2002).

    CAS  PubMed  Google Scholar 

  39. Pui, C. H. et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359, 1909–1915 (2002).

    PubMed  Google Scholar 

  40. Ingham, P. W. & Whittle, R. Trithorax: a new homeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179, 607–614 (1980).

    Google Scholar 

  41. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    CAS  PubMed  Google Scholar 

  42. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schneider, J. et al. Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol. Cell 19, 849–856 (2005).

    CAS  PubMed  Google Scholar 

  44. Steward, M. M. et al. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nature Struct. Mol. Biol. 13, 852–854 (2006).

    CAS  Google Scholar 

  45. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    CAS  PubMed  Google Scholar 

  47. Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P. & Korsmeyer, S. J. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol. Cell. Biol. 23, 186–194 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L. & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100, 3710–3718 (2002).

    CAS  PubMed  Google Scholar 

  49. Birke, M. et al. The Montana domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 30, 958–965 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Slany, R. K., Lavau, C. & Cleary, M. L. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol. Cell. Biol. 18, 122–129 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeleznik-Le, N. J., Harden, A. M. & Rowley, J. D. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc. Natl Acad. Sci. USA 91, 10610–10614 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thiel, A. T. et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148–159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M. L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mueller, D. et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller, T., Williams, K., Johnstone, R. W. & Shilatifard, A. Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. J. Biol. Chem. 275, 32052–32056 (2000).

    CAS  PubMed  Google Scholar 

  56. Shilatifard, A. et al. ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc. Natl Acad. Sci. USA 94, 3639–3643 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. DiMartino, J. F. et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 96, 3887–3893 (2000).

    CAS  PubMed  Google Scholar 

  58. Eissenberg, J. C. et al. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc. Natl Acad. Sci. USA 99, 9894–9899 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gerber, M., Ma, J., Dean, K., Eissenberg, J. C. & Shilatifard, A. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J. 20, 6104–6114 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, E. R., Winter, B., Eissenberg, J. C. & Shilatifard, A. Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. Proc. Natl Acad. Sci. USA 105, 8575–8579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schulze, J. M., Wang, A. Y. & Kobor, M. S. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochem. Cell Biol. 87, 65–75 (2009).

    CAS  PubMed  Google Scholar 

  62. Bitoun, E., Oliver, P. L. & Davies, K. E. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum. Mol. Genet. 16, 92–106 (2007).

    CAS  PubMed  Google Scholar 

  63. Estable, M. C. et al. MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J. Biomed. Sci. 9, 234–245 (2002).

    CAS  PubMed  Google Scholar 

  64. Boettiger, A. N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007).

    CAS  PubMed  Google Scholar 

  66. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007).

    CAS  PubMed  Google Scholar 

  67. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    CAS  PubMed  Google Scholar 

  68. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005).

    CAS  PubMed  Google Scholar 

  69. Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277, 30421–30424 (2002).

    CAS  PubMed  Google Scholar 

  70. Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    CAS  PubMed  Google Scholar 

  71. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    CAS  PubMed  Google Scholar 

  72. Im, H. et al. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J. Biol. Chem. 278, 18346–18352 (2003).

    CAS  PubMed  Google Scholar 

  73. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    PubMed  PubMed Central  Google Scholar 

  74. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  75. Schulze, J. M. et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol. Cell 35, 626–641 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Krivtsov, A. V. et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14, 355–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goessling, W. et al. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev. Biol. 320, 161–174 (2008).

    CAS  PubMed  Google Scholar 

  78. Gregorieff, A. & Clevers, H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 19, 877–890 (2005).

    CAS  PubMed  Google Scholar 

  79. Karim, R., Tse, G., Putti, T., Scolyer, R. & Lee, S. The significance of the Wnt pathway in the pathology of human cancers. Pathology 36, 120–128 (2004).

    CAS  PubMed  Google Scholar 

  80. Mosimann, C., Hausmann, G. & Basler, K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nature Rev. Mol. Cell Biol. 10, 276–286 (2009).

    CAS  Google Scholar 

  81. Sierra, J., Yoshida, T., Joazeiro, C. A. & Jones, K. A. The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev. 20, 586–600 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  PubMed  Google Scholar 

  83. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    CAS  PubMed  Google Scholar 

  85. Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol. II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    CAS  PubMed  Google Scholar 

  86. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  87. Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis. Nature Rev. Cancer 10, 361–371 (2010).

    CAS  Google Scholar 

  88. Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714–3725 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Margaritis, T. & Holstege, F. C. Poised RNA polymerase II gives pause for thought. Cell 133, 581–584 (2008).

    CAS  PubMed  Google Scholar 

  90. Shilatifard, A., Conaway, R. C. & Conaway, J. W. The RNA polymerase II elongation complex. Annu. Rev. Biochem. 72, 693–715 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Smith, A. Gamis and E. Park for conversations, suggestions and critical reading of the manuscript. They also thank L. Shilatifard for editorial assistance. C.L. is a graduate student registered with the Open University. The studies in the Shilatifard laboratory are supported in part by grants from Alex's Lemonade Stand Foundation to E.G. and from the US National Institute of Health grants R01GM069905, R01CA150265 and R01CA89455 to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shilatifard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ali Shilatifard's homepage

Glossary

Multidimensional protein identification technology

(MudPIT). This is a sensitive mass spectrometric method used for the identification of complex mixtures of proteins.

YEATS domain

The YEATS domain proteins are a diverse family of proteins conserved from yeast to human, which function in chromatin modifications and remodelling, and transcriptional regulation. The name for this family of proteins is derived from the first five proteins (YAF9, ENL, AF9, TAF14 and SAS5) that were discovered to have this domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, M., Lin, C., Guest, E. et al. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 10, 721–728 (2010). https://doi.org/10.1038/nrc2915

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing