Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The colony-stimulating factors and cancer

Abstract

The four colony-stimulating factors (CSFs) are glycoproteins that regulate the generation and some functions of infection-protective granulocytes and macrophages. Recombinant granulocyte-CSF (G-CSF) and granulocyte–macrophage-CSF (GM-CSF) have now been used to increase dangerously low white blood cell levels in many millions of cancer patients following chemotherapy. These CSFs also release haematopoietic stem cells to the peripheral blood, and these cells have now largely replaced bone marrow as more effective populations for transplantation to cancer patients who have treatment-induced bone marrow damage.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The biological actions of the colony-stimulating factors.

References

  1. Metcalf, D. Foundations in Cancer Research. Hemopoietic regulators and leukemia development: a personal retrospective. Adv. Cancer Res. 63, 41–91, (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Furth, J. Conditioned and autonomous neoplasms: a review. Cancer Res. 13, 477–492 (1953).

    CAS  PubMed  Google Scholar 

  3. Furth, J. The concept of conditioned and autonomous neoplasms. Leuk. Res. Ciba Found. Symp. 38–41 (1954).

  4. Bradley, T. R. & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287–300 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Ichikawa, Y., Pluznik, D. H. & Sachs, L. In vitro control of the development of macrophage and granulocyte colonies. Proc. Natl Acad. Sci. USA 56, 488–495 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pluznik, D. H. & Sachs, L. The induction of clones of normal 'mast' cells by a substance in conditioned medium. Exp. Cell Res. 43, 553–563 (1966).

    Article  CAS  PubMed  Google Scholar 

  7. Robinson, W. A., Metcalf, D. & Bradley, T. R. Stimulation by normal and leukaemic mouse sera of colony formation in vitro by mouse bone marrow cells. J. Cell. Comp. Physiol. 69, 83–92 (1967).

    Article  Google Scholar 

  8. Pike, B. L. & Robinson, W. A. Human bone marrow colony growth in agar-gel. J. Cell. Physiol. 76, 77–84 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Stanley, E. R. & Metcalf, D. Partial purification and some properties of the factor in normal and leukaemic human urine stimulating mouse bone marrow colony growth in vitro. Aust. J. Exp. Biol. Med.Sci. 47, 467–483 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. Burgess, A. W., Camakaris, J. & Metcalf, D. Purification and properties of colony-stimulating factor from mouse lung conditioned medium. J. Biol. Chem. 252, 1998–2003 (1977).

    CAS  PubMed  Google Scholar 

  11. Stanley, E. R. & Heard, P. M. Factors regulating macrophage production and growth: purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J.Biol. Chem. 252, 4305–4312 (1977).

    CAS  PubMed  Google Scholar 

  12. Ihle, J. N., Keller, J., Henderson, L., Klein, F. & Palaszynski, E. Procedures for the purification of interleukin 3 to homogeneity. J. Immunol. 129, 2431–2436 (1982).

    CAS  PubMed  Google Scholar 

  13. Nicola, N. A., Metcalf, D., Matsumoto, M. & Johnson, G. R. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells: identification as granulocyte colony-stimulating factor. J. Biol. Chem. 258, 9017–9023 (1983).

    CAS  PubMed  Google Scholar 

  14. Gasson, J. C. et al. Purified human granulocyte–macrophage colony-stimulating factor: direct action on neutrophils. Science 266, 1339–1342 (1984).

    Article  Google Scholar 

  15. Welte, K. E. et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc. Natl Acad. Sci. USA 82, 1526–1530 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong, G. G. et al. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228, 810–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Nomura, H. et al. Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J. 5, 871–876 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zenke, G. et al. Purification and characterization of natural human interleukin-3. Lymphokine Cytokine Res. 10, 329–335 (1991).

    CAS  PubMed  Google Scholar 

  19. Fung, M.-C. et al. Molecular cloning of cDNA for murine interleukin-3. Nature 307, 233–237 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Yokota, T. et al. Isolation and characterisation of a mouse cDNA clone that expresses mast cell growth factor activity in monkey cells. Proc. Natl Acad. Sci. USA 81, 1070–1074 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gough, N. M. et al. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte–macrophage colony stimulating factor. Nature 309, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. DeLamarter, J. F. et al. Nucleotide sequence of a cDNA encoding murine CSF-1 (macrophage-CSF). Nucleic Acids Res. 15, 2389–2390 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cantrell, M. A. et al. Cloning, sequence and expression of a human granulocyte/macrophage colony stimulating factor. Proc. Natl Acad. Sci. USA 82, 6250–6254 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagata, S. et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415–418 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Souza, L. M. et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232, 61–65 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Kawasaki, E. S. et al. Molecular cloning of complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230, 291–296 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Y.-C. et al. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47, 3–10 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Metcalf, D. & Nicola, N. A. The Hemopoietic Colony-Stimulating Factors: From Biology to Clinical Applications (Cambridge University Press, UK, 1995).

    Book  Google Scholar 

  29. Tushinski, R. J. et al. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71–81 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Metcalf, D. et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J. Cell. Physiol. 128, 421–431 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Metcalf, D. & Nicola, N. A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hematopoietic cells. J. Cell. Physiol. 116, 198–206 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Metcalf, D., Begley, C. G., Nicola, N. & Johnson, G. R. Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo recombinant multi-CSF (IL-3). Exp. Hematol. 15, 288–295 (1987).

    CAS  PubMed  Google Scholar 

  33. Li, C. L. & Johnson, G. R. Rhodamine 123 reveals heterogeneity within murine Lin, Sca-1+ hemopoietic stem cells. J. Exp. Med. 175, 1443–1447 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Metcalf, D. & Nicola, N. A. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors. Proc. Natl Acad.Sci. USA 88, 6239–6243 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meunch, M. D., Schneider, J. G. & Moore, M. A. S. Interaction amongst colony stimulating factors, IL-1β, IL-6 and kit-ligand in the regulation of primitive murine hematopoietic cells. Exp. Hematol. 20, 339–349 (1992).

    Google Scholar 

  36. Metcalf, D. & Foster, R. Behavior on transfer of serum stimulated bone marrow colonies. Proc. Soc. Exp. Biol. Med. 126, 758–762 (1967).

    Article  Google Scholar 

  37. Paran, M. & Sachs, L. The continuous requirement for inducers for the development of macrophage and granulocyte colonies. J. Cell. Physiol. 72, 247–250 (1968).

    Article  CAS  PubMed  Google Scholar 

  38. Begley, C. G. et al. Purified colony stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony stimulating factors. Blood 68, 162–166, (1986).

    CAS  PubMed  Google Scholar 

  39. Williams, G. T., Smith, C. A., Spooncer, E., Dexter, T. M. & Taylor, D. R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343, 76–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Roussel, M. F. & Sherr, C. J. Signal transduction by the macrophage colony-stimulating factor receptor. Curr. Opin. Hematol. 1, 11–18 (1993).

    Google Scholar 

  42. Laâbi, Y., Metcalf, D., Mifsud, S. & Di Rago, L. Differentiation commitment and regulator-specific granulocyte–macrophage maturation in a novel pro-B murine leukemic cell line. Leukemia 14, 1785–1795, (2000).

    Article  PubMed  Google Scholar 

  43. Rieger, M. A. et al. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Metcalf, D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony stimulating factors. Proc. Natl Acad. Sci. USA 88, 11310–11314 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fairbairn, L. J., Cowling, G. J., Reipert, B. M. & Dexter, T. M. Suppression of apoptosis allows differentiation and development of a multipotent haemopoietic stem cell line in the absence of added growth factors. Cell 74, 823–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. McArthur, G. A., Rohrschneider, L. R. & Johnson, G. R. Induced expression of c-fms in normal hematopoietic cells shows evidence for both conservation and lineage restriction of signal transduction in response to macrophage colony-stimulating factor. Blood 83, 972–981 (1994).

    CAS  PubMed  Google Scholar 

  47. Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808 (1991).

    CAS  PubMed  Google Scholar 

  48. Gasson, J. C. Molecular physiology of granulocyte–macrophage colony-stimulating factor. Blood 77, 1131–1145 (1991).

    CAS  PubMed  Google Scholar 

  49. Hollingshead, L. M. & Goa, K. L. Recombinant granulocyte colony-stimulating factor (rG-CSF): a review of its pharmacological properties and prospective role in neutropenic conditions. Drugs 42, 300–330 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Grant, S. M. & Heel, R. C. Recombinant granulocyte–macrophage colony-stimulating factor (rGM-CSF): a review of its pharmacological properties and prospective role in the management of myelosuppression. Drugs 43, 516–560 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nature Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  Google Scholar 

  52. Nicola, N. A. in Hematopoietic Growth Factors 101–120 (eds Quesenberry, P. J., Asano, S. & Saito, K.) (Excerpta Medica, Amsterdam 1991).

    Google Scholar 

  53. Fukunaga, R., Ishizaka-Ikeda, E. & Nagata, S. Purification and characterization of the receptor for murine granulocyte colony-stimulating factor. J. Biol. Chem. 265, 14008–14015 (1990).

    CAS  PubMed  Google Scholar 

  54. Hansen, G. et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Dong, F. et al. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol. Cell. Biol. 13, 7774–7778 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakamaki, K., Miyajima, I., Kitamura, T. & Miyajima, A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, Il-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11, 3541–3549 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nicholson, S. E., Novak, U., Zeigler, S. F. & Layton, J. E. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signalling molecules JAK2, Stat3, and p42, p44MAPK. Blood 10, 3698–3704 (1995).

    Google Scholar 

  58. Brown, A. L., Peters, M., D'Andrea, R. J. & Gonda, T. J. Constitutive mutants of the GM-CSF receptor reveal multiple pathways leading to myeloid cell survival, proliferation, and granulocyte–macrophage differentiation. Blood 103, 507–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Hercus, T. R. et al. The granulocyte–macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114, 1289–1298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    CAS  PubMed  Google Scholar 

  61. Stanley, E. et al. Granulocyte–macrophage colony-stiimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl Acad. Sci. USA 91, 5592–5596 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dranoff, G. et al. Involvement of granulocyte–macrophage colony-stimulating factor in pulmonary homeostasis. Science 264, 713–716 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Bonfield, T. L. et al. Autoantibodies against granulocyte macrophage colony-stimulating factor are diagnostic for pulmonary alveolar proteinosis. Am. J. Respir. Cell Mol. Biol. 27, 481–486 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Wiktor-Jedrzejczak, W. et al. CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp. Hematol. 20, 1004–1010 (1992).

    CAS  PubMed  Google Scholar 

  65. Lieschke, G. J. et al. Mice lacking both macrophage- and granulocyte–macrophage colony-stimulating factor have macrophages and co-existent osteopetrosis and severe lung disease. Blood 84, 27–35 (1994).

    CAS  PubMed  Google Scholar 

  66. Pollard, J. W., Hunt, J. S., Wiktor-Jedrzejczak, W. & Stanley, E. R. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev. Biol. 148, 273–283 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Nicola, N. A. et al. Functional inactivation in mice of the gene for the interleukin-3 (IL-3)-specific receptor β-chain: implications for IL-3 function and the mechanism of receptor transmodulation in hematopoietic cells. Blood 87, 2665–2674 (1996).

    CAS  PubMed  Google Scholar 

  68. Nishinakamura, R. et al. Hematopoiesis in mice lacking the entire granulocyte–macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88, 2458–2464 (1996).

    CAS  PubMed  Google Scholar 

  69. Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Mach, N. et al. Involvement of interleukin-3 in delayed-type hypersensitivity. Blood 91, 778–783 (1998).

    CAS  PubMed  Google Scholar 

  71. Cynshi, O. et al. Reduced response to granulocyte colony-stimulating factor in W/Wv and S1/S1d mice. Leukemia 5, 75–77 (1991).

    CAS  PubMed  Google Scholar 

  72. Metcalf, D. & Nicola, N. A. The clonal proliferation of normal mouse hematopoietic cells: enhancement and suppression by CSF combinations. Blood 79, 2861–2866 (1992).

    CAS  PubMed  Google Scholar 

  73. Metcalf, D., Mifsud, S. & Di Rago, L. Murine megakaryocyte progenitor cells and their susceptibility to suppression by G-CSF. Stem Cells 23, 55–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Metcalf, D., Di Rago, L. & Mifsud, S. Synergistic and inhibitory interactions in the in vitro control of murine megakaryocyte colony formation. Stem Cells 20, 552–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Metcalf, D. et al. Murine hematopoietic blast colony-forming cells and their progeny have distinctive membrane marker profiles. Proc. Natl Acad. Sci. USA 106, 19102–19107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Molineux, G., Pojda, Z. & Dexter, T. M. A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood 75, 563–569 (1990).

    CAS  PubMed  Google Scholar 

  77. Metcalf, D. et al. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp. Hematol. 15, 1–9 (1987).

    CAS  PubMed  Google Scholar 

  78. Metcalf, D. et al. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68, 46–57 (1986).

    CAS  PubMed  Google Scholar 

  79. Lord, B. I. et al. Myeloid cell kinetics in mice treated with recombinant interkeukin-3, granulocyte colony-stimulating (CSF), or granulocyte–macrophage CSF in vivo. Blood 77, 2154–2159 (1991).

    CAS  PubMed  Google Scholar 

  80. Cairo, M. S. et al. Prophylactic or simultaneous administration of recombinant human granulocyte colony stimulating factor in the treatment of group B streptococcal sepsis in neonatal rats. Pediatr. Res. 27, 612–616 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Herbert, J. C., O'Reilly, M. & Gamelli, R. L. Protective effect of recombinant human granulocyte colony-stimulating factor against pneumonococcal infections in splenectomized mice. Arch. Surg. 125, 1075–1078 (1990).

    Article  Google Scholar 

  82. Matsumoto, M. et al. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect. Immun. 55, 2715–2720 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wakiyama, H. et al. Therapeutic effect of granulocyte colony-stimulating factor and cephem antibiotics against experimental infections in neutropenic mice induced by cyclophosphamide. Clin.Exp. Immunol. 92, 218–224 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasuda, H. et al. Therapeutic efficacy of granulocyte colony-stimulating factor alone and in combination with antibiotics against Pseudomonas aeruginosa infections in mice. Infect. Immun. 58, 2502–2509 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lang, R. A. et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness and a fatal syndrome of tissue damage. Cell 51, 675–686 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Johnson, G. R., Gonda, T. J., Metcalf, D., Hariharan, I. K. & Cory, S. A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte–macrophage colony-stimulating factor. EMBO J. 8, 441–448 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chang, J. M., Metcalf, D., Lang, R. A., Gonda, T. J. & Johnson, G. R. Non-neoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood 73, 1487–1497 (1989).

    CAS  PubMed  Google Scholar 

  88. Chang, J. M., Metcalf, D., Gonda, T. J. & Johnson, G. R. Long-term exposure to retrovirally-expressed G-CSF induces a non-neoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J. Clin. Invest. 84, 1488–1496 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hortner, M., et al. Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J. Immunol. 169, 1219–1227 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Croker, B. A. et al. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Moore, M. A. S., Williams, N. & Metcalf, D. In vitro colony formation by normal and leukemic human hematopoietic cells: interaction between colony-forming and colony-stimulating cells. J. Natl Cancer Inst. 50, 591–602 (1973).

    Article  CAS  PubMed  Google Scholar 

  92. Moore, M. A. S., Spitzer, G., Williams, N., Metcalf, D. & Buckley, J. Agar culture studies in 127 cases of untreated acute leukemia: the prognostic value of reclassification of leukemia according to in vitro growth characteristics. Blood 44, 1–18 (1974).

    CAS  PubMed  Google Scholar 

  93. Miyauchi, J. et al. The effects of combinations of the recombinant growth factors GM-CSF, G-CSF, IL-3 and CSF-1 on leukemic blast cells in suspension culture. Leukemia 2, 382–387 (1988).

    CAS  PubMed  Google Scholar 

  94. Metcalf, D. & Moore, J. G. Divergent disease patterns in GM-CSF transgenic mice associated with differing transgene insertion sites. Proc. Natl Acad. Sci. USA. 85, 7767–7771 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rasko, J. E. J., Metcalf, D., Alexander, B., Strasser, A. & Begley, C. G. Establishment of multipotential and antigen presenting cell lines derived from myeloid leukemias in GM-CSF transgenic mice. Leukemia 11, 732–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Lang, R. A., Metcalf, D., Gough, N. M., Dunn, A. R. & Gonda, T. J. Expression of a hemopoietic growth factor cDNA in a factor-dependent cell line results in autonomous growth and tumorigenicity. Cell 43, 531–542 (1985).

    Article  CAS  PubMed  Google Scholar 

  97. Dührsen, U. & Metcalf, D. A model system for leukemic transformation of immortalized hemopoietic cells in irradiated recipient mice. Leukemia 2, 329–333 (1988).

    PubMed  Google Scholar 

  98. Dührsen, U., Stahl, J. & Gough, N. M. In vivo transformation of factor-dependent hemopoietic cells: role of intracisternal A-particle transposition for growth factor gene activation. EMBO J. 9, 1087–1096 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Perkins, A., Kongsuwan, K., Visvader, J., Adams, J. M. & Cory, S. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc. Natl Acad. Sci. USA 87, 8398–8402 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moore, M. A. S. Converging pathways in leukemogenesis and stem cell self-renewal. Exp. Hematol. 33, 719–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Young, D. C., Wagner, K. & Griffin, J. D. Constitutive expression of the granulocyte–macrophage colony-stimulating factor gene in acute myeloblastic leukemia. J. Clin. Invest. 79, 100–106 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang, X., Lopez, A., Holyoake, T., Eaves, A. & Eaves, C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 96, 12804–12809 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gonda, T. J. & D'Andrea, R. J. Activating mutations in cytokine receptors: implications for receptor function and role in disease. Blood 89, 355–369 (1997).

    CAS  PubMed  Google Scholar 

  104. Gabrilove, J. L. et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J. Clin. Invest. 82, 1454–1461 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morstyn, G. et al. Effect of granulocyte colony-stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 331, 667–672 (1988).

    Article  Google Scholar 

  106. Bonilla, M. A. et al. Effects of recombinant human granulocyte colony stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574–1580 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Lieschke, G. J. et al. Effects of bacterially, synthesized recombinant human granulocyte–macrophage colony-stimulating factor in patients with advanced malignancy. Ann. Intern. Med. 110, 357–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Hammond, W. P., Price, T. H., Souza, L. M. & Dale, D. C. Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N. Engl. J. Med. 320, 1306–1311 (1989).

    Article  PubMed  Google Scholar 

  109. Dale, D. C. et al. Randomized controlled Phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81, 2496–2502 (1993).

    CAS  PubMed  Google Scholar 

  110. Cole, D. J. et al. Phase I trial of recombinant human macrophage colony-stimulating factor administered by continuous intravenous infusion in patients with metastatic cancer. J. Natl Cancer Inst. 86, 39–45 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Postmus, R. E. et al. Effects of recombinant interleukin-3 in patients with relapsed small-cell lung cancer treated with chemotherapy: a dose-finding study. J. Clin. Oncol. 10, 1131–1140 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Bodey, G. P., Buckley, M., Sathe, Y. S. & Freireich, E. J. Quantitative relationships between circulating leukocytes and infections in patients with acute leukemia. Ann. Intern. Med. 64, 328–340 (1966).

    Article  CAS  PubMed  Google Scholar 

  113. Bronchud, M. H. et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br. J. Cancer 56, 809–813 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Crawford, J. et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N. Engl. J. Med. 325, 164–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Trillet-Lenoir, V. et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur. J. Cancer 29A, 319–324 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Gianni, A. M. et al. Recombinant human granulocyte–macrophage colony-stimulating factor reduces hematologic toxicity and widens clinical applicability of high-dose cyclophosphamide treatment in breast cancer and non-Hodgkin's lymphoma. J. Clin. Oncol. 8, 768–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Gerhartz, H. H., et al. Randomized, double-blind, placebo-controlled, Phase III study of recombinant human granulocyte–macrophage colony-stimulating factor as adjunct to induction treatment of high-grade malignant non-Hodgkin's lymphomas. Blood 82, 2329–2339 (1993).

    CAS  PubMed  Google Scholar 

  118. Renwick, W., Pettengell, R. & Green, M. Use of filgrastim and pegfilgrastim to support delivery of chemotherapy: twenty years of clinical experience. BioDrugs 23, 175–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Nemunaitis, J. et al.. Use of recombinant human granulocyte–macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 76, 245–253 (1990).

    CAS  PubMed  Google Scholar 

  120. Nemunaitis, J. et al. Use of recombinant human granulocyte–macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies. Blood 72, 834–836 (1988).

    CAS  PubMed  Google Scholar 

  121. Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor–nerve interactions and bone cancer pain. Nature Med. 15, 802–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Holmes, F. A. et al. Blinded, randomized multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. J. Clin. Oncol. 20, 729–731 (2002).

    Article  Google Scholar 

  123. Green, M. D. et al. A randomized double-blind multicenter Phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann. Oncol. 14, 29–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Klastersky, J., Awada, A., Aoun, M. & Paesmans, M. Should the indications for the use of myeloid growth factors for the prevention of febrile neutropenia in cancer patients be extended? Curr. Opin. Oncol. 21, 297–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Dale, D. C. Hematopoietic growth factors for the treatment of severe chronic neutropenia. Stem Cells 13, 94–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. D'Souza, A., Jaiyesimi, I,. Trainor, L. & Venuturumili, P. Granulocyte colony-stimulating factor administration: adverse events. Transfus Med. Rev. 22, 280–290 (2008).

    Article  PubMed  Google Scholar 

  127. Miyake, T., Kung, CK.-H. & Goldwasser, E. Purification of human erythropoietin. J. Biol. Chem. 252, 5558–5564 (1977).

    CAS  PubMed  Google Scholar 

  128. Jacobs, K. et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313, 806–810 (1985).

    Article  CAS  PubMed  Google Scholar 

  129. Phrommintikul, A., Hass, S. J., Elsik, M. & Krum, H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 369, 381–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Spivak, J. L., Gascón, P. & Ludwig, H. Anemia management in oncology and hematology. Oncologist 14, 43–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Dührsen, U. et al. Effects of recombinant human granulocyte-colony stimulating factor on hemopoietic progenitor cells in cancer patients Blood 72, 2074–2081 (1988).

    PubMed  Google Scholar 

  132. Gianni, A. M. et al. Granulocyte–macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 2, 580–585 (1989).

    Article  CAS  PubMed  Google Scholar 

  133. Socinski, M. A. et al. Granulocyte–macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 331, 1194–1198 (1988).

    Article  Google Scholar 

  134. Molineux, G., Podja, Z., Hampson, I. N., Lord, B. I., & Dexter, T. M. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76, 2153 (1990).

    CAS  PubMed  Google Scholar 

  135. Haas, R. et al. Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte–macrophage colony-stimulating factor. Exp. Hematol. 18, 94–98 (1990).

    CAS  Google Scholar 

  136. Sheridan, W. P. et al. Effect of peripheral-blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339, 640–644 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Van Hoef, M. E. Haematological recovery after high-dose consolidation chemotherapy with peripheral blood progenitor cell rescue: the effects of the mobilization regimen and post-transplant growth factors. Neth. J. Med. 52, 30–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Chao, N. J. et al. Granulocyte colony-stimulating factor “mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 81, 2031–2035 (1993).

    CAS  PubMed  Google Scholar 

  139. Richman, C. M., Weiner, R. S. & Yankee, R. A. Increase in circulating stem cells following chemotherapy in man. Blood 47, 1031–1039 (1976).

    CAS  PubMed  Google Scholar 

  140. Quesenberry, P. J. et al. Stem cell engraftment strategies. Annals N. Y. Acad. Sci. 938, 54–61 (2001).

    Article  CAS  Google Scholar 

  141. Hölig, K. et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood 114, 3757–3763 (2009).

    Article  PubMed  CAS  Google Scholar 

  142. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Vremec, D. et al. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 27, 40–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Jinushi, M. & Tahara, H. Cytokine gene-mediated immunotherapy: current status and future perspectives. Cancer Sci. 100, 1389–1396 (2009).

    CAS  Google Scholar 

  147. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA. 90, 3539–3543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Soiffer, R. et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. 21, 3343–3350 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Soiffer, R. et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete human granulocyte–macrophage colony stimulating factor generates potent anti-tumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 95, 13141–13146 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Salgia, R. et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol. 21, 624–630 (2003).

    Article  PubMed  Google Scholar 

  151. Nemunaitis, J. et al. Granulocyte–macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung carcinoma. J. Natl. Cancer Inst. 96, 326–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Simons, J. et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160–5168 (1999).

    CAS  PubMed  Google Scholar 

  153. Tani, K. et al. Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinical and immunological findings. Mol. Ther. 10, 799–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Small, E. J. et al. Granulocyte macrophage colony-stimulating factor —secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin. Cancer Res. 13, 3883–3891 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Kirkwood, J. M. et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine +/− granulocyte–monocyte colony-stimulating factor and/or IFN-α2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res. 15, 1443–1451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Merad, M. & Manz, M. G. Dendritic cell homeostasis. Blood 113, 3418–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Grigg, A. P. et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 86, 4437–4445 (1995).

    CAS  PubMed  Google Scholar 

  159. Sheridan, W. P. et al. Granulocyte-colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet 334, 891–895 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to grant support from the Cancer Council of Victoria; the National Institutes of Health, Bethesda grant number CA22556; and the National Health and Medical Research Council, Canberra, program grant number 461219.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The Walter and Eliza Hall Institute of Medical Research and the Ludwig Institute for Cancer Research (Melbourne) share the patent for GM-CSF and the institutes and staff members obtain royalties from its sale.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

pegfilgrastim

Glossary

Aplastic

Severely reduced cellular content

Commitment

The change, usually irreversible, when a multipotent cell generates or becomes a cell that expresses membrane markers and a gene programme restricting the cell to a particular lineage

Conditioned medium

Medium harvested after incubation of cultured cells or tissues

Febrile neutropenia

Condition of abnormally low blood neutrophil levels plus fever

Immortalization

A change rendering cells capable of proliferation for prolonged (perhaps unlimited) time periods, usually the cells are not neoplastic

Lineage

A subfamily of one type of haematopoietic cell

Maturation

The sequence of morphological and biochemical changes during which immature cells generate or become mature cells

Socs family

A family of cytokine (regulator)-induced cytoplasmic inhibitors of signalling from regulator-activated membrane receptors

Synergy

Enhanced cellular responses when two or more regulators interact on target cells

Thrombocytopenia

Abnormally low blood platelet levels

Transformed

Usually indicating an irreversible change from normal to neoplastic cells

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Metcalf, D. The colony-stimulating factors and cancer. Nat Rev Cancer 10, 425–434 (2010). https://doi.org/10.1038/nrc2843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing