PARP inhibition: PARP1 and beyond

Subjects

Abstract

Recent findings have thrust poly(ADP-ribose) polymerases (PARPs) into the limelight as potential chemotherapeutic targets. To provide a framework for understanding these recent observations, we review what is known about the structures and functions of the family of PARP enzymes, and then outline a series of questions that should be addressed to guide the rational development of PARP inhibitors as anticancer agents.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural and functional characteristics of PARP1.

References

  1. 1

    Chambon, P., Weill, J. D. & Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43 (1963).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Doly, J. & Petek, F. Etude de la structure d'un composé “poly(ADP-ribose)” synthétisé par des extraits nucléaires de foie de poulet. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 263, 1341–1344 (1966).

    CAS  Google Scholar 

  3. 3

    Chambon, P., Weill, J. D., Doly, J., Strosser, M. T. & Mandel, P. On the formation of a novel adelylic compound by enzymatic extracts of liver nuclei. Biochem. Biophys. Res. Commun. 25, 638–643 (1966).

    CAS  Article  Google Scholar 

  4. 4

    Nishizuka, Y., Ueda, K., Nakazawa, K. & Hayaishi, O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J. Biol. Chem. 242, 3164–3171 (1967).

    CAS  PubMed  Google Scholar 

  5. 5

    Sugimura, T., Fujimura, S., Hasegawa, S. & Kawamura, Y. Polymerization of the adenosine 5′-diphosphate ribose moiety of NAD by rat liver nuclear enzyme. Biochim. Biophys. Acta 138, 438–441 (1967).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Yamada, M., Miwa, M. & Sugimura, T. Studies on poly (adenosine diphosphate-ribose): X. Properties of a partially purified poly (adenosine diphosphate-ribose) polymerase. Arch. Biochem. Biophys. 146, 579–586 (1971).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Okayama, H., Edson, C. M., Fukushima, M., Ueda, K. & Hayaishi, O. Purification and properties of poly(adenosine diphosphate ribose) synthetase. J. Biol. Chem. 252, 7000–7005 (1977).

    CAS  PubMed  Google Scholar 

  8. 8

    Juarez-Salinas, H., Sims, J. L. & Jacobson, M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282, 740–741 (1979).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Benjamin, R. C. & Gill, D. M. ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J. Biol. Chem. 255, 10493–10501 (1980).

    CAS  PubMed  Google Scholar 

  10. 10

    Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Shall, S. & de Murcia, G. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat. Res. 460, 1–15 (2000).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Amé, J. C. et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868 (1999).

    PubMed  Article  Google Scholar 

  13. 13

    Berger, S. J., Sudar, D. C. & Berger, N. A. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 134, 227–232 (1986).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Carson, D. A., Carrera, C. J., Wasson, D. B. & Yamanaka, H. Programmed cell death and adenine deoxynucleotide metabolism in human lymphocytes. Adv. Enzyme Regul. 27, 395–404 (1988).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. Front. Biosci. 14, 1116–1128 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Gradwohl, G. et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc. Natl Acad. Sci. USA 87, 2990–2994 (1990).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Hassa, P. O. & Hottiger, M. O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    CAS  Google Scholar 

  21. 21

    Langelier, M. F., Servent, K. M., Rogers, E. E. & Pascal, J. M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem. 283, 4105–4114 (2008).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Tao, Z., Gao, P., Hoffman, D. W. & Liu, H. W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 47, 5804–5813 (2008).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Altmeyer, M., Messner, S., Hassa, P. O., Fey, M. & Hottiger, M. O. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37, 3723–3738 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Tao, Z., Gao, P. & Liu, H. W. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J. Am. Chem. Soc. 131, 14258–14260 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Kameshita, I., Matsuda, Z., Taniguchi, T. & Shizuta, Y. Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J. Biol. Chem. 259, 4770–4776 (1984).

    CAS  PubMed  Google Scholar 

  26. 26

    Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197–1208 (2008).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Gagné, J. P. et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959–6976 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29

    Timinszky, G. et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Struct. Mol. Biol. 16, 923–929 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Kraus, W. L. New functions for an ancient domain. Nature Struct. Mol. Biol. 16, 904–907 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240–1243 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Gottschalk, A. J. et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl Acad. Sci. USA 106, 13770–13774 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Masson, M. et al. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell Biol. 18, 3563–3571 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    El-Khamisy, S. F., Masutani, M., Suzuki, H. & Caldecott, K. W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 31, 5526–5533 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Ogata, N., Ueda, K., Kagamiyama, H. & Hayaishi, O. ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J. Biol. Chem. 255, 7616–7620 (1980).

    CAS  PubMed  Google Scholar 

  36. 36

    Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C. & Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl Acad. Sci. USA 79, 3423–3427 (1982).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Tulin, A. & Spradling, A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299, 560–562 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Zahradka, P. & Ebisuzaki, K. A shuttle mechanism for DNA–protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur. J. Biochem. 127, 579–585 (1982).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Meyer-Ficca, M. L., Meyer, R. G., Coyle, D. L., Jacobson, E. L. & Jacobson, M. K. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297, 521–532 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Oka, S., Kato, J. & Moss, J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Oka, J., Ueda, K., Hayaishi, O., Komura, H. & Nakanishi, K. ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J. Biol. Chem. 259, 986–995 (1984).

    CAS  PubMed  Google Scholar 

  43. 43

    Okayama, H., Honda, M. & Hayaishi, O. Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. Proc. Natl Acad. Sci. USA 75, 2254–2257 (1978).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol. 8, 774–785 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Huang, Q., Wu, Y. T., Tan, H. L., Ong, C. N. & Shen, H. M. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 16, 264–277 (2009).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Haince, J. F. et al. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J. Biol. Chem. 282, 16441–16453 (2007).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Yang, Y. G., Cortes, U., Patnaik, S., Jasin, M. & Wang, Z. Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23, 3872–3882 (2004).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Sugimura, K., Takebayashi, S., Taguchi, H., Takeda, S. & Okumura, K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 183, 1203–1212 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Audebert, M., Salles, B. & Calsou, P. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279, 55117–55126 (2004).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Veuger, S. J., Curtin, N. J., Smith, G. C. & Durkacz, B. W. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Oncogene 23, 7322–7329 (2004).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Wang, M. et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34, 6170–6182 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Caiafa, P., Guastafierro, T. & Zampieri, M. Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. FASEB J. 23, 672–678 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Kraus, W. L. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr. Opin. Cell Biol. 20, 294–302 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Krishnakumar, R. et al. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319, 819–821 (2008).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Simbulan-Rosenthal, C. M. et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl Acad. Sci. USA 97, 11274–11279 (2000).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Frizzell, K. M. et al. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J. Biol. Chem. 284, 33926–33938 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Amé, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004).

    PubMed  Article  CAS  Google Scholar 

  59. 59

    Kleine, H. et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57–69 (2008).

    CAS  Article  Google Scholar 

  60. 60

    Karlberg, T., Hammarstrom, M., Schutz, P., Svensson, L. & Schuler, H. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Biochemistry 49, 1056–1058 (2010).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Lehtio, L. et al. Zinc binding catalytic domain of human tankyrase 1. J. Mol. Biol. 379, 136–145 (2008).

    PubMed  Article  CAS  Google Scholar 

  62. 62

    Lehtio, L. et al. Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3. J. Med. Chem. 52, 3108–3111 (2009).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Ménissier de Murcia, J. et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Chiang, Y. J. et al. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PLoS ONE 3, e2639 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65

    Yelamos, J., Schreiber, V. & Dantzer, F. Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol. Med. 14, 169–178 (2008).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Shieh, W. M. et al. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273, 30069–30072 (1998).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Sallmann, F. R., Vodenicharov, M. D., Wang, Z. Q. & Poirier, G. G. Characterization of sPARP-1. An alternative product of PARP-1 gene with poly(ADP-ribose) polymerase activity independent of DNA strand breaks. J. Biol. Chem. 275, 15504–15511 (2000).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. & Thompson, C. B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Liu, Y. et al. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo. Mol. Cell. Biol. 24, 5314–5323 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Raval-Fernandes, S., Kickhoefer, V. A., Kitchen, C. & Rome, L. H. Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res. 65, 8846–8852 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Hsiao, S. J. & Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83–92 (2008).

    CAS  Article  Google Scholar 

  72. 72

    Sbodio, J. I. & Chi, N. W. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J. Biol. Chem. 277, 31887–31892 (2002).

    CAS  Article  Google Scholar 

  73. 73

    Canudas, S. et al. Protein requirements for sister telomere association in human cells. EMBO J. 26, 4867–4878 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Hsiao, S. J. & Smith, S. Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. J. Cell Biol. 184, 515–526 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Nobori, T., Yamanaka, H. & Carson, D. A. Poly(ADP-ribose) polymerase inhibits DNA synthesis initiation in the absence of NAD. Biochem. Biophys. Res. Commun. 163, 1113–1118 (1989).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Zaremba, T. & Curtin, N. J. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem. 7, 515–523 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Satoh, M. S., Poirier, G. G. & Lindahl, T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33, 7099–7106 (1994).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Farzaneh, F., Zalin, R., Brill, D. & Shall, S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature 300, 362–366 (1982).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Johnstone, A. P. & Williams, G. T. Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature 300, 368–370 (1982).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Saleh-Gohari, N. et al. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol. Cell Biol. 25, 7158–7169 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Anders, C. & Carey, L. A. Understanding and treating triple-negative breast cancer. Oncology 22, 1233–1239 (2008).

    PubMed  Google Scholar 

  83. 83

    Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer 4, 814–819 (2004).

    CAS  Article  Google Scholar 

  84. 84

    McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Ashworth, A. Drug resistance caused by reversion mutation. Cancer Res. 68, 10021–10023 (2008).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Ratnam, K. & Low, J. A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin. Cancer Res. 13, 1383–1388 (2007).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Plummer, R. et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 14, 7917–7923 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    O'Shaughnessy, J. et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized Phase II trial. J. Clin. Oncol. 27, 3 (2009).

    Article  Google Scholar 

  92. 92

    Ossovskaya, V. et al. BSI-201 enhances the activity of multiple classes of cytotoxic agents and irradiation in triple negative breast cancer. Abstract 5552. Proc. Annu. Meet. Am. Assoc. Cancer Res. (2009).

  93. 93

    Pacher, P. & Szabo, C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc. Drug Rev. 25, 235–260 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Goldberg, S., Visochek, L., Giladi, E., Gozes, I. & Cohen-Armon, M. PolyADP-ribosylation is required for long-term memory formation in mammals. J. Neurochem. 111, 72–79 (2009).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Morrison, C. et al. Genetic interaction between PARP and DNA-PK in V(D)J. recombination and tumorigenesis. Nature Genet. 17, 479–482 (1997).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Tong, W. M. et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res. 62, 6990–6996 (2002).

    CAS  PubMed  Google Scholar 

  97. 97

    Tong, W. M. et al. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53−/− mice. Am. J. Pathol. 162, 343–352 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Lilyestrom, W., van der Woerd, M. J., Clark, N. & Luger, K. Structural and biophysical studies of human PARP-1 in complex with damaged DNA. J. Mol. Biol. 395, 983–994 (2010).

    CAS  Article  Google Scholar 

  99. 99

    Formentini, L. et al. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J. Biol. Chem. 284, 17668–17676 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Loseva, O. et al. Poly(ADP-ribose) polymerase-3 (PARP-3) is a mono-ADP ribosylase that activates PARP-1 in absence of DNA. J. Biol. Chem. 11 Jan 2010 (doi: 10.1074/jbc.M109.077834).

  101. 101

    McCabe, N. et al. Targeting tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene 28, 1465–1470 (2009).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Turner, N. C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Mendeleyev, J., Kirsten, E., Hakam, A., Buki, K. G. & Kun, E. Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem. Pharmacol. 50, 705–714 (1995).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Moore, J. et al. Treatment of cancer. US Patent Application Publication US2008/0103104 A1 (2008).

    Google Scholar 

  105. 105

    Konishi, Y. et al. Possible model of liver carcinogenesis using inhibitors of NAD+ ADP ribosyl transferase in rats. Toxicol. Pathol. 14, 483–488 (1986).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Takahashi, S. et al. Enhancement of DEN initiation of liver carcinogenesis by inhibitors of NAD+ ADP ribosyl transferase in rats. Carcinogenesis 5, 901–906 (1984).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    McLennan, A. G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63, 123–143 (2006).

    CAS  Article  Google Scholar 

  109. 109

    Huang, Q. & Shen, H. M. To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 5, 273–276 (2009).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Munoz-Gamez, J. A. et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5, 61–74 (2009).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Otto, H. et al. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6, 139 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112

    Alvarez-Gonzalez, R. & Jacobson, M. K. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 26, 3218–3224 (1987).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Rippmann, J. F., Damm, K. & Schnapp, A. Functional characterization of the poly(ADP-ribose) polymerase activity of tankyrase 1, a potential regulator of telomere length. J. Mol. Biol. 323, 217–224 (2002).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Sbodio, J. I., Lodish, H. F. & Chi, N. W. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem. J. 361, 451–459 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Augustin, A. et al. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J. Cell Sci. 116, 1551–1562 (2003).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Bauer, P. I., Buki, K. G., Hakam, A. & Kun, E. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem. J. 270, 17–26 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J. Biol. Chem. 268, 22575–22580 (1993).

    CAS  Google Scholar 

  118. 118

    de Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Masutani, M. et al. Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice. Mol. Cell Biochem. 193, 149–152 (1999).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Wang, Z. Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Yelamos, J. et al. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J. 25, 4350–4360 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Yeh, T. Y. et al. Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58, 2476–2485 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Chiang, Y. J. et al. Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice. Mol. Cell. Biol. 26, 2037–2043 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Hsiao, S. J., Poitras, M. F., Cook, B. D., Liu, Y. & Smith, S. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol. Cell. Biol. 26, 2044–2054 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Albert, J. M. et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin. Cancer Res. 13, 3033–3042 (2007).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Clarke, M. J. et al. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol. Cancer Ther. 8, 407–414 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Donawho, C. K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Horton, T. M. et al. Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol. Cancer Ther. 8, 2232–2242 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129

    Liu, S. K. et al. A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol. 88, 258–268 (2008).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Liu, X. et al. Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single-stranded DNA damages to double-stranded DNA breaks. Mol. Cancer Res. 6, 1621–1629 (2008).

    CAS  PubMed  Google Scholar 

  131. 131

    Penning, T. D. et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R.)-2-methylpyrrolidin-2-yl]- 1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem. 52, 514–523 (2009).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Daniel, R. A. et al. Inhibition of poly(ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin. Cancer Res. 15, 1241–1249 (2009).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Thomas, H. D. et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 6, 945–956 (2007).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    Dungey, F. A., Caldecott, K. W. & Chalmers, A. J. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol. Cancer Ther. 8, 2243–2254 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135

    Dungey, F. A., Loser, D. A. & Chalmers, A. J. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential. Int. J. Radiat. Oncol. Biol. Phys. 72, 1188–1197 (2008).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Evers, B. et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14, 3916–3925 (2008).

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Hay, T. et al. Poly(ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res. 69, 3850–3855 (2009).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Menear, K. A. et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phth alazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51, 6581–6591 (2008).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    CAS  PubMed  Article  Google Scholar 

  140. 140

    Miknyoczki, S. et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol. Cancer Ther. 6, 2290–2302 (2007).

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Jones, P. et al. Discovery of 2-{4-[(3S)-Piperidin-3-yl]phenyl}-2H-indazole-7-.carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor+ efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 52, 7170–7185 (2009).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by research funds from a Canada research chair in proteomics, the Canadian Institutes of Health Research (CIHR grants MOP-74648 and IG1-14052), the Cancer Research Society, the Alberta Cancer Board and the National Institutes of Health (NIH grant P50 CA136393-01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guy G. Poirier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

AG014699

BSI-201

carboplatin

gemcitabine

olaparib

temozolomide

OMIM

http://www.ncbi.nlm.nih.gov/omim

Protein Data Base 

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rouleau, M., Patel, A., Hendzel, M. et al. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10, 293–301 (2010). https://doi.org/10.1038/nrc2812

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing