Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Dissecting cancer through mathematics: from the cell to the animal model

Abstract

This Timeline article charts progress in mathematical modelling of cancer over the past 50 years, highlighting the different theoretical approaches that have been used to dissect the disease and the insights that have arisen. Although most of this research was conducted with little involvement from experimentalists or clinicians, there are signs that the tide is turning and that increasing numbers of those involved in cancer research and mathematical modellers are recognizing that by working together they might more rapidly advance our understanding of cancer and improve its treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From biological hypothesis to testable prediction by mathematical modelling.
Figure 2: Alternative approaches for modelling the growth of multicellular spheroids (MCS).
Figure 3: Multi-scale modelling of vascular tumour growth.
Figure 4: A mathematical model of vascularized tumour growth.
Figure 5: Changes in tumour cell growth after drug exposure.

References

  1. Gatenby, R. A. & Gawlinski, E. T. A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745–5753 (1996).

    CAS  PubMed  Google Scholar 

  2. Noble, D. Computational models of the heart and their use in assessing the actions of drugs. J. Pharmacol. Sci. 107, 107–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Nordling, C. O. A new theory on the cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armitage, P. & Doll, R. The age distribution of cancer and multistage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  Google Scholar 

  6. Hanahan, D. & Weinberg, R. The hallmarks of cancer, Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  7. Spencer, S. L., Gerety, R. A., Pienta, K. J. & Forrest, S. Modelling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2, e108 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Quaranta, V, Rejniak, K. A., Gerlee, P & Anderson, A. R. Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. Semin. Cancer Biol. 18, 338–348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smallbone, K., Gavaghan, D. J., Gatenby, R. A. & Maini, P. K. The role of acidity in solid tumour growth and invasion. J. Theor. Biol. 235, 476–484 (2007).

    Article  CAS  Google Scholar 

  10. Nowak, M. A., Michor, F. & Iwasa, Y. The linear process of somatic evolution. Proc. Natl Acad. Sci. USA 100, 14966–14969 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Komarova, N. L., Sadovsky, A. V. & Wan, F. Y. M. Selective pressures for and against genetic instability in cancer: a time-dependent problem. J. Roy. Soc. Interface 5, 105–121 (2008).

    Article  Google Scholar 

  12. Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavaré, S. & Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA 106, 4828–4833 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Burton, A. C. Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966).

    CAS  PubMed  Google Scholar 

  14. Greenspan, H. P. Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 52, 317–340 (1972).

    Article  Google Scholar 

  15. Folkman, J. & Hochberg, M. Self-regulation of growth in three-dimensions, J. Exp. Med. 138 745–753 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byrne, H. M. & Chaplain, M. A. J. Necrosis and apoptosis: distinct cell loss mechanisms? J. Theor. Med. 1, 223–236 (1998).

    Article  Google Scholar 

  17. Owen, M. R., Byrne, H. M. & Lewis, C. E. Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol. 226, 377–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, Y., Pjesivac-Grbovic, Cantrell, C. & Freyer, J. P. A multiscale model for avascular tumour growth. Biophys. J. 89, 3884–3894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Araujo, R. P. & McElwain, D. L. S. A history of the study of solid tumor growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Preziosi, L. Cancer modelling and simulation. (CRC, Boca Raton, USA, 2003).

    Book  Google Scholar 

  21. Tracqui, P. Biophysical models of tumor growth. Rep. Prog. Phys. 72, 29 Apr 2009 (doi:10.1088/0034-4885/72/5/056701).

  22. Roose, T., Chapman, S. J. & Maini, P. K. Mathematical models of avascular tumour growth: a review. SIAM Rev. 49, 179–208 (2007).

    Article  Google Scholar 

  23. Greenspan, H. P. On the growth and stability of cell cultures and solid tumours. J. Theor. Biol. 56, 229–242 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Byrne, H. M. & Chaplain, M. A. J. Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Math. Comput. Model 24, 1–17 (1996).

    Article  Google Scholar 

  25. Cristini, V., Lowengrub, J. & Nie, Q., Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003).

    Article  PubMed  Google Scholar 

  26. Ward, J. P. & King, J. R. Mathematical modelling of avascular tumour growth, IMA J. 14, 39–69 (1997).

    CAS  Google Scholar 

  27. Byrne, H. M., King, J. R., McElwain, D. L. S. & Preziosi, L. A two-phase model of solid tumour growth, Appl. Math. Lett. 16, 567–573 (2003).

    Article  Google Scholar 

  28. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K., Solid stress inhibits the growth of multicellular tumour spheroids. Nature Biotech. 15, 778–783 (1997).

    Article  CAS  Google Scholar 

  29. Chen, C. Y., Byrne, H. M. & King, J. R. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids, J. Math. Biol. 43, 191–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Roose, T., Netti, P. A., Munn, L. L., Boucher, Y. & Jain, R. K. Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66, 204–212 (2003).

    Article  PubMed  Google Scholar 

  31. Radisky, D. C., Kenny, P. A. & Bissell, M. J. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J. Cell Biochem. 101, 830–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bertheim, U., Hofer P, A., Engström-Laurent, A. & Hellström, S. The stromal reaction in basal cell carcinomas. A prerequisite for tumour progression and treatment strategy. Br. J. Plast. Surg. 57, 429–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, A. R. A. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005).

    Article  PubMed  Google Scholar 

  34. Byrne, H. & Drasdo, D. Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009).

    Article  PubMed  Google Scholar 

  35. Kim, Y., Stolarska, M. A. & Othmer, H. G. A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results. Math. Model. Meth. Appl. Sci. 17 S1773–S1798 (2007).

    Article  Google Scholar 

  36. Balding, D. & McElwain, D. L. S. A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Folkman, J., Tumour angiogenesis, Adv. Cancer Res. 19, 331–358 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Byrne, H. M. & Chaplain, M. A. J. Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461–486 (1995).

    Article  CAS  Google Scholar 

  39. Muthukkaruppan, V. R., Kubai, L. & Auerbach, R. Tumour-induced neovascularisation in the mouse eye. J. Natl. Cancer Inst. 69, 699–705 (1982).

    CAS  PubMed  Google Scholar 

  40. Panovska, J., Byrne, H. M. & Maini, P. K. A theoretical study of the response of vascular tumours to different types of chemotherapy. Math. Comput. Model 47, 560–579 (2008).

    Article  Google Scholar 

  41. Orme, M. E. & Chaplain, M. A. Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. 14, 189–205 (1997).

    CAS  Google Scholar 

  42. Stokes, C. L. & Lauffenburger, D. A. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Anderson, A. R. A. & Chaplain, M. A. J. Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. McDougall, S. R., Anderson, A. R., Chaplain, M. A. & Sherratt, J. A. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. McDougall, S. R., Anderson, A. R. & Chaplain, M. A. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006).

    Article  PubMed  Google Scholar 

  46. Levine, H. A., Sleeman, B. D. & Nilsen-Hamilton, M. A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitiors in preventing angiogenesis. Math. Biosci. 168, 77–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Levine, H. A., Tucker, A. L. & Nilsen-Hamilton, M. A mathematical model for the role of cell signal transduction in the initiation and the inhibition of angiogenesis. Growth Factors 20, 155–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bentley, K, Gerhardt, H. & Bates, P. A. Agent-based simulations of notch-mediated tip selection in angiogenic sprout initialisation. J. Theor. Biol. 250, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Alarcón, T. & Page, K. M. Mathematical models of the VEGF receptor and its role in cancer therapy. J. Roy. Soc. Interface 4, 283–304 (2007).

    Article  CAS  Google Scholar 

  50. Stefanini, M. O., Wu, F. T., Mac Gabhann, F. & Popel, A. S. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2, 77 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wu, F. T., Stafanini, M. O., Mac Gabhann, F. & Popel, A. S. A compartment model of VEGF disitribution in human in the presence of soluble VEGF receptor-1 acting as a ligand trap. PLoS ONE 4, e5108 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, S15–S18 (2002).

    Article  CAS  Google Scholar 

  53. Jain, R. K. Determinants of tumor blood flow: a review, Cancer Res. 48, 2641–2658 (1988).

    CAS  PubMed  Google Scholar 

  54. Hahnfeldt, P., Panigraphy, D., Folkman, J. & Hlatky, L. Tumour development under angiogenic signalling: a dynamical theory of tumour growth, treatment response and postvascular dormancy, Cancer Res. 59, 4770–4775 (1999).

    CAS  PubMed  Google Scholar 

  55. Stoll, B. R., Migliorini, C., Kadambi, A., Munn, L. L. & Jain, R. K. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood 102, 2555–2561 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Stamper, I. J., Byrne, H. M., Owen, M. R. & Maini, P. K. Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull. Math. Biol. 69, 2737–2772 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Arakelyan, L., Merbl, Y. & Agur, Z. Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur. J. Cancer 41, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Patel, A. A. Gawlinsky, E. T., Lemieux, S. K., Gatenby, R. A. Cellular automaton model of early tumour growth and invasion: the effects of native tissue vascularity and increased anaerobic tumour metabolism. J. Theor. Biol. 213, 315–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Alarcòn, T., Byrne, H. M. & Maini, P. K. A multiple scale model for tumour growth. Multiscale Model Simul. 3, 440–475 (2005).

    Article  CAS  Google Scholar 

  60. Gevertz, J. L. & Torquato, S. Modelling the effects of vasculature evolution on early brain tumour growth, J. Theor. Biol. 243, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bauer, A. L., Jackson, T. L. & Jiang, Y. A cell-based model exhibiting branching and anastamosis during tumour-induced angiogenesis. Biophys. J. 92, 3105–3121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Owen, M. R., Alarcón, T., Maini, P. K. &, Byrne, H. M. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009).

    Article  PubMed  Google Scholar 

  63. Macklin, P., McDougall, S., Anderson, A. R., Chaplain, M. A. Cristini, V. & Lowengrub J., Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009).

    Article  PubMed  Google Scholar 

  64. Jain, R. K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Deisboeck, T. S., Zhang, L., Yoon, J. & Costa, J. In silico cancer modelling: is it ready for prime time? Nature Clin. Pract. Oncol. 6, 34–42 (2009).

    Article  CAS  Google Scholar 

  66. Wheldon, T. E., Kirk, J. & Orr, J. S. Optimal radiotherapy of tumour cells following exponential-quadratic survival curves and exponential repopulation kinetics. Brit. J. Radiol. 50, 681–682 (1977).

    Article  CAS  PubMed  Google Scholar 

  67. Wouters, B. G. & Brown, J. M. Cells at intermediate oxygen levels can be more important than the hypoxic fraction in determining tumour response to fractionated radiotherapy. Radiat. Res. 147, 541–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. McAneney, H., O'Rourke, S. F. C. Investigation of various growth mechanisms of solid tumour growth within the linear quadratic model for radiotherapy. Phys. Med. Biol. 52, 1039–1054 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Kirkpatrick, J. P. & Marks, L. B. Modelling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int. J. Radiat. Oncol. Biol. Phys. 58, 641–654 (2004).

    Article  PubMed  Google Scholar 

  70. Rockne, R., Alvord, E. C., Rockhill, J. K. & Swanson, K. R. A mathematical model for brain tumour response to radiation therapy. J. Math. Biol. 58, 561–578 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Swanson, K. R., Bridge, C., Murray, J. D. & Alvord, E. C. Virtual and real brain tumours: using mathematical modelling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003).

    Article  PubMed  Google Scholar 

  72. Szeto, M. D. et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res. 69, 4502–4509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Swanson, K. R., Alvord, E. C. & Murray, J. D. A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 33, 317–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Whiteley, J. P. Gavaghan, D. J. Chapman, S. J. & Brady, J. M. Non-linear modelling of breast tissue. Math. Med. Biol. 24, 327–345 (2007).

    Article  PubMed  Google Scholar 

  75. Araujo, R. P., Liotta, L. A. & Petricoin, E. F. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Rev. Drug Discov. 6, 871–880 (2007).

    Article  CAS  Google Scholar 

  76. Basse, B., Baguley, B. C., Marshall, E. S., Wake, G. & Wall, D. J., Modelling the flow [corrected] cytometric data obtained from unperturbed human tumour cell lines: parameter fitting and comparison. Bull. Math. Biol. 67, 815–830 (2005).

    Article  PubMed  Google Scholar 

  77. Panetta, J. C. A mathematical model of breast and ovarian cancer treated with paclitaxel. Math. Biosci. 146, 89–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988).

    CAS  PubMed  Google Scholar 

  79. Byrne, H. M., Alarcón, T., Owen, M. R., Webb, S. W. & Maini, P. K. Modelling aspects of cancer dynamics: a review. Philos. Transact. A Math. Phys. Eng. Sci. 364, 1563–1578 (2006).

    Article  CAS  Google Scholar 

  80. Lowengrub, J. S. et al. Nonlinear modelling of cancer: bridging the gap between cells and tumour. Nonlinearity 23, R1–R91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frieboes, H. B. et al. Prediction of drug response in breast cancer using integrative experimental/computational modelling. Cancer Res., 69, 4484–4492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jain, H. V., Nör, J. E. & Jackson, T. L. Quantification of endothelial cell-targeted anti-Bcl-2 therapy and its suppression of tumor growth and vascularization. Mol. Cancer Ther. 8, 2926–2936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Abdollahi, A. et al. Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc. Natl Acad. Sci. USA. 104, 12890–12895 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Alarcón, T., Byrne, H. M. & Maini, P. K. Towards whole-body modelling of tumour growth. Prog. Biophys. Mol. Biol. 85, 451–472 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

H.M.B. would like to thank M. Owen (University of Nottingham, UK) for generating the multi-scale numerical simulations and also C. Lewis and G. Tozer (University of Sheffield, UK) for providing images from their laboratories. H.M.B. is also grateful to S. McElwain and D. Hutmacher (Queensland University of Technology, Australia) for their helpful and constructive comments on the Timeline.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information S1

Simulation showing the control case of untreated tumour growth, generated using a multiscale model of vascular tumour growth (owen et al., 2009) and accompany FIGS 4 and 5. (MOV 1731 kb)

Supplementary Information S2

Simulation showing the response of the tumour in (i) to chemotherapy, generated using a multiscale model of vascular tumour growth (owen et al., 2009) and accompany FIGS 4 and 5. (MOV 1823 kb)

Supplementary Information S3

Simulation showing the response of the tumour in (i) to immunotherapy, generated using a multiscale model of vascular tumour growth (owen et al., 2009) and accompany FIGS 4 and 5. (MOV 1624 kb)

Supplementary Information S4

Simulation showing the response of the tumour in (i) to combined chemo-and immuno-therapy, generated using a multiscale model of vascular tumour growth (owen et al., 2009) and accompany FIGS 4 and 5. (MOV 1785 kb)

Related links

Related links

FURTHER INFORMATION

Helen M. Byrne's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, H. Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10, 221–230 (2010). https://doi.org/10.1038/nrc2808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2808

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer