Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From pathogenesis to treatment of chronic lymphocytic leukaemia

Key Points

  • Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in the Western world. It is characterized by the accumulation of small B lymphocytes that have a mature appearance.

  • Two subsets of CLL cases can be differentiated by the degree of somatic hypermutation (mutated and unmutated immunoglobulin heavy chain variable region (IGHV) genes) that have distinct clinical and biological behaviours.

  • Overall, more than 20% of CLL cases carry stereotyped B cell receptors, suggesting that common antigen(s) are recognized by CLL cells.

  • Clonal B cell populations with a CLL immunophenotype have been detected in 3.5% of healthy individuals (monoclonal B cell lymphocytosis; MBL). MBL is often a CLL precursor.

  • Approximately 80% of CLLs show aberrations in a few frequently affected chromosomal regions, including 13q14 (mir-15a and mir16-1), 11q23 (ataxia telangiectasia-mutated; ATM), trisomy 12 and 17p13 (TP53). Recurrent translocations are rare in CLL.

  • Global and gene-specific aberrant DNA methylation has been detected in CLL. Almost all sporadic CLL cases also show epigenetic silencing of death-associated protein kinase 1.

  • In lymphoid organs, CLL cells interact with and seem to shape their microenvironment, which consists of T cells, stromal cells and soluble factors. This interaction is emerging as a therapeutic target.

  • p53 plays a central part in our current understanding of why some patients fail to respond to chemotherapy.

  • The most powerful prognostic factors include 17p13 deletion, TP53 mutation, 11q23 deletion, IGHV mutation status, serum markers, clinical stage and age.

  • CLL may serve as a model of how microenvironmental stimuli, antigenic drive and epigenetic, as well as genetic, deregulation are combined in cancer pathogenesis.

Abstract

Chronic lymphocytic leukaemia (CLL) has several unique features that distinguish it from other cancers. Most CLL tumour cells are inert and arrested in G0/G1 of the cell cycle and there is only a small proliferative compartment; however, the progressive accumulation of malignant cells will ultimately lead to symptomatic disease. Pathogenic mechanisms have been elucidated that involve multiple external (for example, microenvironmental stimuli and antigenic drive) and internal (genetic and epigenetic) events that are crucial in the transformation, progression and evolution of CLL. Our growing understanding of CLL biology is allowing the translation of targets and biological classifiers into clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLL pathogenic mechanisms and examples of targeted treatment options.
Figure 2: CLLs with unmutated or mutated IGHV genes show markedly different biological and clinical behaviours.
Figure 3: TP53 mutations in CLL.

Similar content being viewed by others

References

  1. Dores, G. M. et al. Chronic lymphocytic leukaemia and small lymphocytic lymphoma: overview of the descriptive epidemiology. Br. J. Haematol. 139, 809–819 (2007).

    Article  PubMed  Google Scholar 

  2. Goldin, L. R., Pfeiffer, R. M., Li, X. & Hemminki, K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood 104, 1850–1854 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hallek, M. et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111, 5446–5456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiorazzi, N., Rai, K. R. & Ferrarini, M. Chronic lymphocytic leukemia. N. Engl. J. Med. 352, 804–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Binet, J. L. et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48, 198–206 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Rai, K. R. et al. Clinical staging of chronic lymphocytic leukemia. Blood 46, 219–234 (1975).

    CAS  PubMed  Google Scholar 

  7. Fais, F. et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J. Clin. Invest. 102, 1515–1525 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  9. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999). The two pivotal studies by Hamblin et al . and Damle et al . establish the prognostic impact of IGHV mutational status in CLL.

    CAS  PubMed  Google Scholar 

  10. Tobin, G. et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vλ2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101, 4952–4957 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Messmer, B. T., Albesiano, E., Messmer, D. & Chiorazzi, N. The pattern and distribution of immunoglobulin VH gene mutations in chronic lymphocytic leukemia B cells are consistent with the canonical somatic hypermutation process. Blood 103, 3490–3495 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Ghia, P. et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 105, 1678–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Stamatopoulos, K. et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 109, 259–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Schroeder, H. W. Jr & Dighiero, G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol. Today 15, 288–294 (1994). An analysis indicating that CLL cells use a IGHV repertoire that is characteristic of mature B cells, and suggests that antigens may play a part in the pathogenesis of this disease.

    Article  CAS  PubMed  Google Scholar 

  15. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci USA 99, 15524–15529 (2002). This study establishes the link between 13q14 deletion and downregulation of miR-15a and miR-16-1 in CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Döhner, H. et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85, 1580–1589 (1995).

    PubMed  Google Scholar 

  18. Raval, A. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129, 879–890 (2007). This study describes a pathogenetic link between downregulation of DAPK1 (by methylation) and CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schaffner, C., Stilgenbauer, S., Rappold, G. A., Döhner, H. & Lichter, P. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94, 748–753 (1999).

    CAS  PubMed  Google Scholar 

  20. Austen, B. et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106, 3175–3182 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Austen, B. et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J. Clin. Oncol. 25, 5448–5457 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Döhner, H. et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1910–1916 (2000). Development of the hierarchical model of CLL prognosis based on recurrent genomic aberrations.

    Article  PubMed  Google Scholar 

  23. Zenz, T. et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112, 3322–3329 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Klein, U. & Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nature Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  Google Scholar 

  25. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nature Rev. Cancer 5, 251–262 (2005).

    Article  CAS  Google Scholar 

  26. Kröber, A. et al. VH mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100, 1410–1416 (2002).

    PubMed  Google Scholar 

  27. Hamblin, T. J., Davis, Z. A. & Oscier, D. G. Determination of how many immunoglobulin variable region heavy chain mutations are allowable in unmutated chronic lymphocytic leukaemia — long-term follow up of patients with different percentages of mutations. Br. J. Haematol. 140, 320–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Gurrieri, C. et al. Chronic lymphocytic leukemia B cells can undergo somatic hypermutation and intraclonal immunoglobulin VHDJH gene diversification. J. Exp. Med. 196, 629–639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albesiano, E. et al. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood 102, 3333–3339 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Oscier, D. G., Thompsett, A., Zhu, D. & Stevenson, F. K. Differential rates of somatic hypermutation in VH genes among subsets of chronic lymphocytic leukemia defined by chromosomal abnormalities. Blood 89, 4153–4160 (1997).

    CAS  PubMed  Google Scholar 

  31. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001). This study demonstrates that the global gene expression of IGHV-mutated and unmutated CLLs are more similar to memory B cells than to naive or CD5+ B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenwald, A. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194, 1639–1647 (2001). This study compared gene expression profiles of CLL samples with unmutated and mutated IGHV and discovered that ZAP70 was differentially expressed in these subgroups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Damle, R. N. et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99, 4087–4093 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. 34. Damle, R. N. et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 103, 375–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Stilgenbauer, S. et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 92, 1242–1245 (2007).

    Article  PubMed  Google Scholar 

  36. Kipps, T. J. The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best. Pract. Res. Clin. Haematol. 20, 415–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105, 2036–2041 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Lanham, S. et al. Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 101, 1087–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Mockridge, C. I. et al. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 109, 4424–4431 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Guarini, A. et al. BCR-ligation induced by IgM stimulation results in gene expression and functional changes only in IgVH unmutated chronic lymphocytic leukemia (CLL) cells. Blood 112, 782–792 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Muzio, M. et al. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood 112, 188–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hadzidimitriou, A. et al. Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood 113, 403–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Widhopf, G. F. et al. Nonstochastic pairing of immunoglobulin heavy and light chains expressed by chronic lymphocytic leukemia B cells is predicated on the heavy chain CDR3. Blood 111, 3137–3144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Messmer, B. T. et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J. Exp. Med. 200, 519–525 (2004). The demonstration of a striking degree of structural restriction of the entire BCR in CLL, which suggested that common antigens could be recognized by CLL cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Widhopf, G. F. et al. Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104, 2499–2504 (2004). The findings of virtually identical Igs in 1.3% of CLLs provided compelling evidence that the Igs expressed by CLL B cells are highly selected and unlike the Igs expressed by naive B cells.

    Article  PubMed  CAS  Google Scholar 

  46. Murray, F. et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 111, 1524–1533 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Chiorazzi, N. & Ferrarini, M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21, 841–894 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Herve, M. et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J. Clin. Invest. 115, 1636–1643 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lanemo Myhrinder, A. et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 111, 3838–3848 (2008).

    Article  PubMed  CAS  Google Scholar 

  50. Ghia, E. M. et al. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood 111, 5101–5108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tobin, G. et al. Somatically mutated Ig VH3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99, 2262–2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Potter, K. N. et al. Features of the overexpressed V1-69 genes in the unmutated subset of chronic lymphocytic leukemia are distinct from those in the healthy elderly repertoire. Blood 101, 3082–3084 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Widhopf, G. F. & Kipps, T. J. Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells. J. Immunol. 166, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Catovsky, D. et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 370, 230–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Grever, M. R. et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J. Clin. Oncol. 25, 799–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Catera, R. et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol. Med. 14, 665–674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chu, C. C. et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood 112, 5122–5129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Förster, I., Gu, H. & Rajewsky, K. Germline antibody V regions as determinants of clonal persistence and malignant growth in the B cell compartment. EMBO J. 7, 3693–3703 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Montecino-Rodriguez, E. & Dorshkind, K. New perspectives in B-1 B cell development and function. Trends Immunol. 27, 428–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Fischer, M., Klein, U. & Küppers, R. Molecular single-cell analysis reveals that CD5-positive peripheral blood B cells in healthy humans are characterized by rearranged Vκ genes lacking somatic mutation. J. Clin. Invest. 100, 1667–1676 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klein, U., Rajewsky, K. & Küppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weill, J. C., Weller, S. & Reynaud, C. A. Human marginal zone B cells. Annu. Rev. Immunol. 27, 267–285 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Willenbrock, K., Jungnickel, B., Hansmann, M. L. & Küppers, R. Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase. Eur. J. Immunol. 35, 3002–3007 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Capello, D. et al. Identification of three subgroups of B cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IgV genes. Leukemia 14, 811–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Pasqualucci, L., Neri, A., Baldini, L., Dalla-Favera, R. & Migliazza, A. BCL-6 mutations are associated with immunoglobulin variable heavy chain mutations in B-cell chronic lymphocytic leukemia. Cancer Res. 60, 5644–5648 (2000).

    CAS  PubMed  Google Scholar 

  66. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  69. Hashimoto, S. et al. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J. Exp. Med. 181, 1507–1517 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Wakai, M. et al. IgG+, CD5+ human chronic lymphocytic leukemia B cells. Production of IgG antibodies that exhibit diminished autoreactivity and IgG subclass skewing. Autoimmunity 19, 39–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Seifert M, Küppers R. Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J. Exp. Med. 16 November 2009 (doi:10.1084/jem.20091087)

  72. Sims, G. P. et al. Identification and characterization of circulating human transitional B cells. Blood 105, 4390–4398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matejuk, A. et al. Exclusion of natural autoantibody-producing B cells from IgG memory B cell compartment during T cell-dependent immune responses. J. Immunol. 182, 7634–7643 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Stevenson, F. K. & Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103, 4389–4395 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Rawstron, A. C. et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 100, 635–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nieto, W. G. et al. Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 114, 33–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Rawstron, A. C. et al. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood 100, 2289–2290 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Landgren, O. et al. B-cell clones as early markers for chronic lymphocytic leukemia. N. Engl. J. Med. 360, 659–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rawstron, A. C. et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N. Engl. J. Med. 359, 575–583 (2008). The first detailed study on the incidence, genetic profile and clinical course of MBL.

    Article  CAS  PubMed  Google Scholar 

  80. Dagklis, A. et al. The immunoglobulin gene repertoire of low-count CLL-like MBL is different from CLL: diagnostic implications for clinical monitoring. Blood 114, 26–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Marti, G. et al. Overview of monoclonal B-cell lymphocytosis. Br. J. Haematol. 139, 701–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Mertens, D. et al. Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an epigenetic tumor-suppressor mechanism. Proc. Natl Acad. Sci. USA 103, 7741–7746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Bonci, D. et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Döhner, H. et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 89, 2516–2522 (1997).

    PubMed  Google Scholar 

  86. Lavin, M. F. Ataxia–telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nature Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  87. Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kienle, D. L. et al. Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation, and apoptosis-associated genes. J. Clin. Oncol. 23, 3780–3792 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kalla, C. et al. Analysis of 11q22–q23 deletion target genes in B-cell chronic lymphocytic leukaemia: evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. Eur. J. Cancer 43, 1328–1335 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Stilgenbauer, S. et al. Biologic and clinical markers for outcome after fludarabine (F) or F plus cyclophosphamide (FC) — comprehensive analysis of the CLL4 trial of the GCLLSG. Blood (ASH Annual Meeting Abstracts) 112, 2089 (2008).

    Google Scholar 

  91. Mayr, C. et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107, 742–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Haferlach, C., Dicker, F., Schnittger, S., Kern, W. & Haferlach, T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping. Leukemia 21, 2442–2451 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  PubMed  Google Scholar 

  94. Klein, U. & Dalla-Favera, R. New insights into the phenotype and cell derivation of B cell chronic lymphocytic leukemia. Curr. Top. Microbiol. Immunol. 294, 31–49 (2005).

    CAS  PubMed  Google Scholar 

  95. Di Bernardo, M. C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nature Genet. 40, 1204–1210 (2008). These data provide evidence for common, low-penetrance susceptibility loci for CLL.

    Article  CAS  PubMed  Google Scholar 

  96. Lu, R. Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol. 29, 487–492 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rush, L. J. et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res. 64, 2424–2433 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Corcoran, M. et al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 90, 1078–1088 (2005).

    CAS  PubMed  Google Scholar 

  99. Bialik, S. & Kimchi, A. The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Byrd, J. C. et al. Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood 94, 1401–1408 (1999).

    CAS  PubMed  Google Scholar 

  101. Caligaris-Cappio, F. & Ghia, P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J. Clin. Oncol. 26, 4497–4503 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Messmer, B. T. et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 115, 755–764 (2005). This elegant study demonstrated that CLL cells had definable and often substantial birth rates. CLL is not a static disease but a dynamic process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lagneaux, L., Delforge, A., Bron, D., De Bruyn, C. & Stryckmans, P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91, 2387–2396 (1998).

    CAS  PubMed  Google Scholar 

  104. Ghia, P. et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur. J. Immunol. 32, 1403–1413 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Burger, J. A. et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113, 3050–3058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Granziero, L. et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97, 2777–2783 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Ghia, P. et al. Differential effects on CLL cell survival exerted by different microenvironmental elements. Curr. Top. Microbiol. Immunol. 294, 135–145 (2005).

    CAS  PubMed  Google Scholar 

  108. Hewamana, S. et al. Rel a is an independent biomarker of clinical outcome in chronic lymphocytic leukemia. J. Clin. Oncol. 27, 763–769 (2009).

    Article  PubMed  Google Scholar 

  109. Ramsay, A. G. et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Invest. 118, 2427–2437 (2008). The demonstration of impaired immunological synapse formation and immune dysfunction in T cells from patients with CLL that can be reversed by immune-modulating drugs.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Patten, P. E. et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 111, 5173–5181 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Damle, R. N. et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 110, 3352–3359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deaglio, S. et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 105, 3042–3050 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Burger, J. A. et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96, 2655–2663 (2000).

    CAS  PubMed  Google Scholar 

  114. Kern, C. et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 103, 679–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Novak, A. J., Bram, R. J., Kay, N. E. & Jelinek, D. F. Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 100, 2973–2979 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Tsukada, N., Burger, J. A., Zvaifler, N. J. & Kipps, T. J. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood 99, 1030–1037 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Planelles, L. et al. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 6, 399–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Chanan-Khan, A. et al. Results of a Phase 1 clinical trial of thalidomide in combination with fludarabine as initial therapy for patients with treatment-requiring chronic lymphocytic leukemia (CLL). Blood 106, 3348–3352 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Ferrajoli, A. et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 111, 5291–5297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dighiero, G. et al. Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N. Engl. J. Med. 338, 1506–1514 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Keating, M. J. et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 23, 4079–4088 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Abrisqueta, P. et al. Improving survival in patients with chronic lymphocytic leukemia (1980–2008): the Hospital Clinic of Barcelona experience. Blood 114, 2044–2050 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Eichhorst, B. F. et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 107, 885–891 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Wierda, W. G. et al. Characteristics associated with important clinical end points in patients with chronic lymphocytic leukemia at initial treatment. J. Clin. Oncol. 27, 1637–1643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N. Engl. J. Med. 348, 1764–1775 (2003). The first demonstration that ZAP70, as detected by flow-cytometric analysis, correlates with IGHV mutational status, disease progression and survival in CLL.

    Article  CAS  PubMed  Google Scholar 

  126. Dreger, P. et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia 21, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Zenz, T. et al. How little is too much? p53 inactivation: from laboratory cutoff to biological basis of chemotherapy resistance. Leukemia 22, 2257–2258 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. el Rouby, S. et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82, 3452–3459 (1993).

    CAS  PubMed  Google Scholar 

  129. Rossi, D. et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of del17p13: implications for overall survival and chemorefractoriness. Clin. Cancer Res. 15, 995–1004 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Zenz, T. et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113, 3801–3808 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Pettitt, A. R. et al. p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 98, 814–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Stankovic, T. et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353, 26–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Stilgenbauer, S. et al. Genomic aberrations, VH mutation status and outcome after fludarabine and cyclophosphamide (FC) or FC plus Rituximab (FCR) in the CLL8 trial. Blood (ASH Annual Meeting Abstracts) 112, 781 (2008).

    Google Scholar 

  134. Callen, E., Nussenzweig, M. C. & Nussenzweig, A. Breaking down cell cycle checkpoints and DNA repair during antigen receptor gene assembly. Oncogene 26, 7759–7764 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Kojima, K. et al. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108, 993–1000 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vogler, M. et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113, 4403–4413 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Buchner, M. et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 69, 5424–5432 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Matutes, E. et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 8, 1640–1645 (1994).

    CAS  PubMed  Google Scholar 

  139. Rassenti, L. Z. et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N. Engl. J. Med. 351, 893–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Kröber, A. et al. Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J. Clin. Oncol. 24, 969–975 (2006).

    Article  PubMed  CAS  Google Scholar 

  141. Montserrat, E. et al. How I treat refractory CLL. Blood 107, 1276–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pedersen, I. M. et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 100, 1795–1801 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Wiestner, A. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101, 4944–4951 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Roos, G. et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood 111, 2246–2252 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Shanafelt, T. D. et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J. Clin. Oncol. 24, 4634–4641 (2006).

    Article  PubMed  Google Scholar 

  148. Fabris, S. et al. Molecular and transcriptional characterization of 17p loss in B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 47, 781–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Zenz, T. et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53–p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114, 2589–2597 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Zenz, T., Dohner, H. & Stilgenbauer, S. Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract. Res. Clin. Haematol. 20, 439–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Stilgenbauer, S. et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 27, 3994–4001 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the important contributions of the numerous researchers whose work could not be cited due to space restrictions. The authors are supported in part by the German José Carreras Leukemia Foundation (R06/28v, R06/13 and R08/26f), Else Kröner-Fresenius-Stiftung (P20/07//A11/07), Deutsche Krebshilfe (108,355, 106,142 and 107,239), SBCancer Helmholtz Alliance on Systems Biology and the Global CLL Research Foundation. We thank Antonio Sarno and John Byrd for critical reading of the manuscript. We thank the GCLLSG and the chairman Michael Hallek for long-standing cooperation and support. We thank the European Research Initiative on CLL (ERIC) for ongoing discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Stilgenbauer.

Ethics declarations

Competing interests

The authors receive research funding and other remuneration from Roche, GSK, Bayer Schering pharma and Celgene. They receive other remuneration from Trubion pharmaceuticals.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

alemtuzumab

flavopiridol

fludarabine

lenalidomide

rituximab

OMIM

ataxia–telangiectasia

CLL

FURTHER INFORMATION

Daniel Mertens' laboratory homepage

CLL Global Research Foundation

CLL Research Consortium

CLL Topics

Department of Internal Medicine III at the University of Ulm

European Research Initiative on CLL

The German CLL Study Group

The UK CLL Forum

Glossary

Stereotyped B cell receptors

Strikingly similar B cell receptors, which often arise from the use of common H and L chain V region gene segments that share CDR3 structural features (such as their length, amino acid composition and unique amino acid residues at recombination junctions).

Antigenic drive

CLL cells seem to be selected by a limited set of antigenic epitopes at some point in their development. CLL cells are stimulated by the binding of these antigens to the BCR.

Somatic hypermutation

A process that modifies the immunoglobulin variable region genes by introducing mutations into them at a high rate.

Anergic

A state in which B or T cells are unresponsive and cannot be activated by antigen.

IGHV1-69

A specific IGHV gene found at a high frequency in CLLs with unmutated IGHV.

CpG island

A region of DNA with a high density of cytosine phosphoguanine dinucleotides, which are near the transcriptional start sites of 40% of all mammalian genes. Cytosine methylation in CpG islands is generally associated with stable silencing of the associated gene.

Immunological synapse

The supramolecular structure that is established between a T cell and an antigen-presenting cell or B cell.

Binet stage

A clinical staging system most commonly used in Europe based on lymphadenopathy, spleen and liver size and blood count (red cells and platelets).

Rai classification

A clinical staging system most commonly used in the United States.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenz, T., Mertens, D., Küppers, R. et al. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 10, 37–50 (2010). https://doi.org/10.1038/nrc2764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing