Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

p53 ancestry: gazing through an evolutionary lens

Abstract

Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified p53 family member tree.
Figure 2: A simplified evolutionary schematic of the p53 regulatory network.
Figure 3: Hypothetical changes during phylogenic and oncogenic evolution of p53.

Similar content being viewed by others

References

  1. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article  CAS  Google Scholar 

  2. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).

    Article  CAS  Google Scholar 

  3. Fernandes, A. D. & Atchley, W. R. Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences. J. Mol. Evol. 67, 51–67 (2008).

    Article  CAS  Google Scholar 

  4. Maisse, C., Guerrieri, P. & Melino, G. p73 and p63 protein stability: the way to regulate function? Biochem. Pharmacol. 66, 1555–1561 (2003).

    Article  CAS  Google Scholar 

  5. Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    Article  CAS  Google Scholar 

  6. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  Google Scholar 

  7. Pankow, S. & Bamberger, C. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS ONE 2, e782 (2007).

    Article  Google Scholar 

  8. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).

    Article  CAS  Google Scholar 

  9. Mendoza, L. et al. Ehp53, an Entamoeba histolytica protein, ancestor of the mammalian tumour suppressor p53. Microbiology 149, 885–893 (2003).

    Article  CAS  Google Scholar 

  10. Nedelcu, A. M. & Tan, C. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev. Genes Evol. 217, 801–806 (2007).

    Article  Google Scholar 

  11. Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    Article  CAS  Google Scholar 

  12. Tomasini, R. et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677–2691 (2008).

    Article  CAS  Google Scholar 

  13. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  Google Scholar 

  14. Kruse, J.-P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  Google Scholar 

  15. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  Google Scholar 

  16. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    Article  CAS  Google Scholar 

  17. Langheinrich, U., Hennen, E., Stott, G. & Vacun, G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr. Biol. 12, 2023–2028 (2002).

    Article  CAS  Google Scholar 

  18. Brodsky, M. H. et al. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol. Cell. Biol. 24, 1219–1231 (2004).

    Article  CAS  Google Scholar 

  19. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  Google Scholar 

  20. Peters, M. et al. Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila. Proc. Natl Acad. Sci. USA 99, 11305–11310 (2002).

    Article  CAS  Google Scholar 

  21. MacQueen, A. J. & Villeneuve, A. M. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev. 15, 1674–1687 (2001).

    Article  CAS  Google Scholar 

  22. Stergiou, L., Doukoumetzidis, K., Sendoel, A. & Hengartner, M. O. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ. 14, 1129–1138 (2007).

    Article  CAS  Google Scholar 

  23. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591–595 (2001).

    Article  CAS  Google Scholar 

  24. Sogame, N., Kim, M. & Abrams, J. M. Drosophila p53 preserves genomic stability by regulating cell death. Proc. Natl Acad. Sci. USA 100, 4696–4701 (2003).

    Article  CAS  Google Scholar 

  25. Lee, J. H. et al. In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila. FEBS Lett. 550, 5–10 (2003).

    Article  CAS  Google Scholar 

  26. Akdemir, F., Christich, A., Sogame, N., Chapo, J. & Abrams, J. M. p53 directs focused genomic responses in Drosophila. Oncogene 26, 5184–5193 (2007).

    Article  CAS  Google Scholar 

  27. Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005).

    Article  CAS  Google Scholar 

  28. Mandal, S., Guptan, P., Owusu-Ansah, E. & Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9, 843–854 (2005).

    Article  CAS  Google Scholar 

  29. Derry, W. B. et al. Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ. 14, 662–670 (2007).

    Article  CAS  Google Scholar 

  30. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  Google Scholar 

  31. Maiuri, M. C. et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8, 1571–1576 (2009).

    Article  CAS  Google Scholar 

  32. Tavernarakis, N., Pasparaki, A., Tasdemir, E., Maiuri, M. C. & Kroemer, G. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4, 870–873 (2008).

    Article  CAS  Google Scholar 

  33. Gatz, S. A. & Wiesmüller, L. p53 in recombination and repair. Cell Death Differ. 13, 1003–1016 (2006).

    Article  CAS  Google Scholar 

  34. Aranda-Anzaldo, A. & Dent, M. A. R. Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. Mech. Ageing Dev. 128, 293–302 (2007).

    Article  CAS  Google Scholar 

  35. Gilley, J. & Fried, M. One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus. Oncogene 20, 7447–7452 (2001).

    Article  CAS  Google Scholar 

  36. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  Google Scholar 

  37. Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129, 523–536 (2007).

    Article  CAS  Google Scholar 

  38. Meletis, K. et al. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    Article  CAS  Google Scholar 

  39. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  Google Scholar 

  40. Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).

    Article  CAS  Google Scholar 

  41. Jiang, J. & Hui, C.-C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  Google Scholar 

  42. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  43. Baker, N. E. Master regulatory genes; telling them what to do. Bioessays 23, 763–766 (2001).

    Article  CAS  Google Scholar 

  44. Lemons, D. & McGinnis, W. Genomic evolution of Hox gene clusters. Science 313, 1918–1922 (2006).

    Article  CAS  Google Scholar 

  45. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  CAS  Google Scholar 

  46. Fernald, R. D. Casting a genetic light on the evolution of eyes. Science 313, 1914–1918 (2006).

    Article  CAS  Google Scholar 

  47. Soussi, T. p53 alterations in human cancer: more questions than answers. Oncogene 26, 2145–2156 (2007).

    Article  CAS  Google Scholar 

  48. Olivier, M. et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 16, 1–12 (2009).

    Article  CAS  Google Scholar 

  49. Elledge, R. M. & Allred, D. C. Prognostic and predictive value of p53 and p21 in breast cancer. Breast Cancer Res. Treat. 52, 79–98 (1998).

    Article  CAS  Google Scholar 

  50. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  51. Yamada, Y., Davis, K. D. & Coffman, C. R. Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter. Development 135, 207–216 (2008).

    Article  CAS  Google Scholar 

  52. Danilova, N., Sakamoto, K. M. & Lin, S. p53 family in development. Mech. Dev. 125, 919–931 (2008).

    Article  CAS  Google Scholar 

  53. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005).

    Article  CAS  Google Scholar 

  54. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

  55. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  Google Scholar 

  56. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    Article  CAS  Google Scholar 

  57. Suh, E.-K. et al. p63 protects the female germ line during meiotic arrest. Nature 444, 624–628 (2006).

    Article  CAS  Google Scholar 

  58. Ghafari, F., Pelengaris, S., Walters, E. & Hartshorne, G. M. Influence of p53 and genetic background on prenatal oogenesis and oocyte attrition in mice. Hum. Reprod. 24, 1460–1472 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.L. and J.M.A. are supported by R01 grants from the National Institute of General Medical Sciences and the National Institute of Alcohol Abuse and Alcoholism. J.F.A. is supported by R01 from the National Cancer Institute. We are grateful to A. Diehl for artwork preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Abrams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

p53 family members (PDF 102 kb)

Related links

Related links

FURTHER INFORMATION

John M. Abrams' homepages

John M. Abrams' homepages

John M. Abrams' homepages

International Agency for Cancer Research TP53 Mutation Database

p53 Knowledgebase

The TP53 Website

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, WJ., Amatruda, J. & Abrams, J. p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer 9, 758–762 (2009). https://doi.org/10.1038/nrc2732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing