Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic prognostic and predictive markers in colorectal cancer

A Corrigendum to this article was published on 01 March 2011

This article has been updated

Key Points

  • The most studied markers of colorectal cancer prognosis and response to therapy are somatic mutations in KRAS, adenomatous polyposis coli(APC) and TP53. With the exception of KRAS mutations and their association with clinical resistance to epidermal growth factor receptor (EGFR)-specific antibody therapy, there is no compelling evidence that these markers have a role in clinical decision making.

  • Chromosomal instability is associated with a worse prognosis, and microsatellite instability with a better prognosis.

  • Germline polymorphisms have been described in the metabolic pathways of chemotherapeutic agents used in colorectal cancer — for example, 5-fluorouracil (5-FU) and irinotecan — which correlate with the degree of toxicity.

  • High-throughput expression and genotyping arrays are starting to generate novel markers and gene signatures that may be of use in the management of colorectal cancer. At present, these are not sufficiently validated to be clinically useful.

  • Linking the collection of tissue and germline DNA to well-designed clinical trials will increase our understanding of the mechanisms of poor prognosis, and with it our capacity to identify novel biomarkers.

Abstract

Despite many studies of the likely survival outcome of individual patients with colorectal cancer, our knowledge of this subject remains poor. Until recently, we had virtually no understanding of individual responses to therapy, but the discovery of the KRAS mutation as a marker of probable failure of epidermal growth factor receptor (EGFR)-targeted therapy is a first step in the tailoring of treatment to the individual. With the application of molecular analyses, as well as the ability to perform high-throughput screens, there has been an explosive increase in the number of markers thought to be associated with prognosis and treatment outcome in this disease. In this Review, we attempt to summarize the sometimes confusing findings, and critically assess those markers already in the public domain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Adenoma–carcinoma sequence model for chromosomal instability in colorectal cancer.
Figure 2: The epidermal growth factor receptor signalling pathway.
Figure 3: Venn diagram of chromosomal instability, microsatellite instability and CpG island methylator phenotype.
Figure 4: Pathways that affect 5-fluorouracil efficacy.
Figure 5: Trial schema to demonstrate the use of a predictive biomarker.

Change history

  • 26 February 2011

    This has been corrected on both the html and pdf versions.

References

  1. 1

    Wolpin, B. M. & Mayer, R. J. Systemic treatment of colorectal cancer. Gastroenterology 134, 1296–1310 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Midgley, R. & Kerr, D. J. Capecitabine: have we got the dose right? Nature Clin. Pract. Oncol. 6, 17–24 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Midgley, R. S., Yanagisawa, Y. & Kerr, D. J. Evolution of nonsurgical therapy for colorectal cancer. Nature Clin. Pract. Gastroenterol. Hepatol. 6, 108–120 (2009).

    Article  Google Scholar 

  4. 4

    Dukes, C. The classification of cancer of the rectum. J. Pathol. Bacteriol. 35, 323 (1932).

    Article  Google Scholar 

  5. 5

    Compton, C. C. et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch. Pathol. Lab. Med. 124, 979–994 (2000).

    CAS  PubMed  Google Scholar 

  6. 6

    Steinberg, S. M., Barkin, J. S., Kaplan, R. S. & Stablein, D. M. Prognostic indicators of colon tumors. The Gastrointestinal Tumor Study Group experience. Cancer 57, 1866–1870 (1986).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Kemeny, N. & Braun, D. W. Jr. Prognostic factors in advanced colorectal carcinoma. Importance of lactic dehydrogenase level, performance status, and white blood cell count. Am. J. Med. 74, 786–794 (1983).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Wanebo, H. J., Rao, B. & Pinski, C. M. Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer. N. Engl. J. Med. 299, 448–451 (1978).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    van ' t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002). The first prognostic gene expression signature in any of the common cancers, although it has since come under criticism.

    Article  Google Scholar 

  11. 11

    FDA Clears Breast Cancer Specific Molecular Prognostic Test. US Food and Drug Administration[online], http://www.fda.gov/bbs/topics/NEWS/2007/NEW01555.html (2009).

  12. 12

    Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988). The classical model of colorectal carcinogenesis. Although increasing numbers of exceptions and additions are becoming apparent, this model describes the common mutations found in CRC.

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Andreyev, H. J., Norman, A. R., Cunningham, D., Oates, J. R. & Clarke, P. A. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J. Natl Cancer Inst. 90, 675–684 (1998).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Stites, E. C., Trampont, P. C., Ma, Z. & Ravichandran, K. S. Network analysis of oncogenic Ras activation in cancer. Science 318, 463–467 (2007).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Andreyev, H. J. et al. Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br. J. Cancer 85, 692–696 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Samowitz, W. S. et al. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol. Biomarkers Prev. 9, 1193–1197 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Ince, W. L. et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J. Natl Cancer Inst. 97, 981–989 (2005).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Wang, C. et al. Prognostic significance of microsatellite instability and Ki-ras mutation type in stage II colorectal cancer. Oncology 64, 259–265 (2003).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Ogino, S. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Bokemeyer, C. et al. KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: the OPUS experience. J. Clin. Oncol. 26, Abstr. 4000 (2008).

    Article  Google Scholar 

  24. 24

    Tejpar, S. et al. Relationship of efficacy with KRAS status (wild type versus mutant) in patients with irinotecan-refractory metastatic colorectal cancer (mCRC), treated with irinotecan (q2w) and escalating doses of cetuximab (q1w): the EVEREST experience. J. Clin. Oncol. 26, Abstr. 4001 (2008).

    Article  Google Scholar 

  25. 25

    Van Cutsem, E., Lang, I. & D'haens, G. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCrc) treated with FOLFIRI with or without cetuximab: the CRYSTAL experience. J. Clin. Oncol. 26, Abstr. 2 (2008).

    Article  Google Scholar 

  26. 26

    Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    BRAF V599E becomes V600E. Catalogue Of Somatic Mutations In Cancer - (COSMIC) [online], (2004).

  29. 29

    Di Nicolantonio, F. et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712 (2008).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934 (2002). Demonstrates for the first time that KRAS and BRAF mutations are mutually exclusive, with the important implications of this finding becoming obvious only now.

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Thorstensen, L. et al. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia 7, 99–108 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Lovig, T. et al. APC and CTNNB1 mutations in a large series of sporadic colorectal carcinomas stratified by the microsatellite instability status. Scand. J. Gastroenterol. 37, 1184–1193 (2002).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Bondi, J., Bukholm, G., Nesland, J. M. & Bukholm, I. R. Expression of non-membranous β-catenin and γ-catenin, c-Myc and cyclin D1 in relation to patient outcome in human colon adenocarcinomas. Apmis 112, 49–56 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Hugh, T. J. et al. Cadherin-catenin expression in primary colorectal cancer: a survival analysis. Br. J. Cancer 80, 1046–1051 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Russo, A. et al. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol. 23, 7518–7528 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Munro, A. J., Lain, S. & Lane, D. P. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br. J. Cancer 92, 434–444 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Popat, S. & Houlston, R. S. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur. J. Cancer 41, 2060–2070 (2005).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Halling, K. C. et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J. Natl Cancer Inst. 91, 1295–1303 (1999).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Roth, A. D. et al. Correlation of molecular markers in colon cancer with stage-specific prognosis: results of the translational study on the PETACC 3 - EORTC 40993-SAKK 60–00 trial. ASCO Gastrointest. Cancers Symp. Abstr. 288 (2009).

  40. 40

    Carethers, J. M., Hawn, M. T., Greenson, J. K., Hitchcock, C. L. & Boland, C. R. Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer. Gastroenterology 114, 1188–1195 (1998).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Alhopuro, P. et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin. Cancer Res. 11, 6311–6316 (2005).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Boulay, J. L. et al. SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br. J. Cancer 87, 630–634 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Alazzouzi, H. et al. SMAD4 as a prognostic marker in colorectal cancer. Clin. Cancer Res. 11, 2606–2611 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Rowan, A. et al. Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin. Gastroenterol. Hepatol. 3, 1115–1123 (2005).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Olschwang, S. et al. Alternative genetic pathways in colorectal carcinogenesis. Proc. Natl Acad. Sci. USA 94, 12122–12127 (1997).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Jass, J. R. et al. Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J. Clin. Pathol. 52, 455–460 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Boland, C. R. et al. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  48. 48

    Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57, 941–950 (2008).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005). Together with reference 48, this paper underlines the importance of the molecular phenotype and illustrates the delay from novel insight to established clinical practice.

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Sinicrope, F. A. et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131, 729–737 (2006).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet. 38, 787–793 (2006).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Barault, L. et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 68, 8541–8546 (2008).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Shen, L. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA 104, 18654–18659 (2007).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Ogino, S., Kawasaki, T., Kirkner, G. J., Loda, M. & Fuchs, C. S. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J. Mol. Diagn. 8, 582–588 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Samowitz, W. S. et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 65, 6063–6069 (2005).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Yamada, Y. et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc. Natl Acad. Sci. USA 102, 13580–13585 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Matsuzaki, K. et al. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin. Cancer Res. 11, 8564–8569 (2005).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Rodriguez, J. et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 66, 8462–9468 (2006).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Ribic, C. M. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247–257 (2003). The first description of the potential detrimental effect of adjuvant 5-FU chemotherapy in MSI-positive CRC.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Sargent, D. J. et al. Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): a pooled molecular reanalysis of randomized chemotherapy trials. J. Clin. Oncol. 26, Abstr. 4008 (2008).

    Article  Google Scholar 

  61. 61

    Jo, W. S. & Carethers, J. M. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark. 2, 51–60 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Kim, G. P. et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol. 25, 767–772 (2007).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Liang, J. T. et al. High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int. J. Cancer 101, 519–525 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Bertagnolli, M. M. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27, 1814–1821 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Fallik, D. et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 63, 5738–5744 (2003).

    CAS  PubMed  Google Scholar 

  66. 66

    Vilar, E. et al. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer 99, 1607–1612 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Saltz, L. B. et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J. Clin. Oncol. 25, 3456–3461 (2007).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Sudo, T., Nitta, M., Saya, H. & Ueno, N. T. Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res. 64, 2502–2508 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Popat, S., Matakidou, A. & Houlston, R. S. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 22, 529–536 (2004).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Marsh, S., McKay, J. A., Cassidy, J. & McLeod, H. L. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int. J. Oncol. 19, 383–386 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Kawakami, K. et al. Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin. Cancer Res. 7, 4096–4101 (2001).

    CAS  PubMed  Google Scholar 

  73. 73

    Mandola, M. V. et al. A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 63, 2898–2904 (2003).

    CAS  PubMed  Google Scholar 

  74. 74

    Mandola, M. V. et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 14, 319–327 (2004).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Lenz, H. J. Pharmacogenomics in colorectal cancer. Semin. Oncol. 30, 47–53 (2003).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Hitre, E. et al. Influence of thymidylate synthase gene polymorphisms on the survival of colorectal cancer patients receiving adjuvant 5-fluorouracil. Pharmacogenet. Genomics 15, 723–730 (2005).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Lurje, G. et al. Thymidylate synthase haplotype is associated with tumor recurrence in stage II and stage III colon cancer. Pharmacogenet. Genomics 18, 161–168 (2008).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Diasio, R. B. & Johnson, M. R. The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil. Pharmacology 61, 199–203 (2000).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Wei, X., McLeod, H. L., McMurrough, J., Gonzalez, F. J. & Fernandez-Salguero, P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Invest. 98, 610–615 (1996). The first description of a germline change in the 5-FU degradation pathway as a marker of outcome, in this case toxicity.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    van Kuilenburg, A. B. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer 40, 939–950 (2004).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Ezzeldin, H. H. & Diasio, R. B. Predicting fluorouracil toxicity: can we finally do it? J. Clin. Oncol. 26, 2080–2082 (2008).

    PubMed  Article  Google Scholar 

  82. 82

    Frosst, P. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet. 10, 111–113 (1995).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Cohen, V. et al. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin. Cancer Res. 9, 1611–1615 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Jakobsen, A., Nielsen, J. N., Gyldenkerne, N. & Lindeberg, J. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J. Clin. Oncol. 23, 1365–1369 (2005).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Sharma, R. et al. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients. Clin. Cancer Res. 14, 817–825 (2008).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Etienne, M. C. et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics 14, 785–792 (2004).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Etienne-Grimaldi, M. C., Francoual, M., Formento, J. L. & Milano, G. Methylenetetrahydrofolate reductase (MTHFR) variants and fluorouracil-based treatments in colorectal cancer. Pharmacogenomics 8, 1561–1566 (2007).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Mishima, M., Samimi, G., Kondo, A., Lin, X. & Howell, S. B. The cellular pharmacology of oxaliplatin resistance. Eur. J. Cancer 38, 1405–1412 (2002).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    McIlwain, C. C., Townsend, D. M. & Tew, K. D. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25, 1639–1648 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Lecomte, T., Landi, B., Beaune, P., Laurent-Puig, P. & Loriot, M. A. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res. 12, 3050–3056 (2006).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Kweekel, D. M., Gelderblom, H. & Guchelaar, H. J. Pharmacology of oxaliplatin and the use of pharmacogenomics to individualize therapy. Cancer Treat. Rev. 31, 90–105 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Stoehlmacher, J. et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer 91, 344–354 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    McLeod, H. L. et al. Pharmacogenetic analysis of systemic toxicity and response after 5-fluorouracil (5FU)/CPT-11, 5FU/oxaliplatin (oxal), or CPT-11/oxal therapy for advanced colorectal cancer (CRC): results from an intergroup trial. Proc. Am. Soc. Clin. Oncol. 22, Abstr. 1013 (2003).

    Google Scholar 

  94. 94

    Iyer, L. et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin. Pharmacol. Ther. 65, 576–582 (1999).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Iyer, L. et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2, 43–47 (2002).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Hoskins, J. M., Goldberg, R. M., Qu, P., Ibrahim, J. G. & McLeod, H. L. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl Cancer Inst. 99, 1290–1295 (2007).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Liu, C. Y. et al. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer 112, 1932–1940 (2008).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Bandres, E. et al. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients. Oncol. Rep. 17, 1089–1094 (2007).

    CAS  PubMed  Google Scholar 

  99. 99

    Del Rio, M. et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J. Clin. Oncol. 25, 773–780 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Grade, M. et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas. Cancer Res. 67, 41–56 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Kleivi, K. et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol. Cancer 6, 2 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102

    Barrier, A. et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J. Clin. Oncol. 24, 4685–4691 (2006).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Wang, Y. et al. Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J. Clin. Oncol. 22, 1564–1571 (2004). The first description of a prognostic gene expression signature in CRC, highlighting both the potential of and problems with this technology.

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Barrier, A. et al. Colon cancer prognosis prediction by gene expression profiling. Oncogene 24, 6155–6164 (2005).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Jiang, Y. et al. Development of a clinically feasible molecular assay to predict recurrence of stage II colon cancer. J. Mol. Diagn. 10, 346–354 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Lin, Y. H. et al. Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin. Cancer Res. 13, 498–507 (2007).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Barrier, A. et al. Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling. Oncogene 26, 2642–2648 (2007).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Barrier, A. et al. Gene expression profiling of nonneoplastic mucosa may predict clinical outcome of colon cancer patients. Dis. Colon Rectum 48, 2238–2248 (2005).

    PubMed  Article  Google Scholar 

  109. 109

    Arango, D. et al. Gene-expression profiling predicts recurrence in Dukes' C colorectal cancer. Gastroenterology 129, 874–884 (2005).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Frederiksen, C. M., Knudsen, S., Laurberg, S. & Orntoft, T. F. Classification of Dukes' B and C colorectal cancers using expression arrays. J. Cancer Res. Clin. Oncol. 129, 263–271 (2003).

    PubMed  Google Scholar 

  111. 111

    Schepeler, T. et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68, 6416–6424 (2008).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Schetter, A. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Lanza, G. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114

    Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A. & Ploner, A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 3017–3024 (2005).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Ntzani, E. E. & Ioannidis, J. P. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362, 1439–1444 (2003).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365, 488–492 (2005).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Dupuy, A. & Simon, R. M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J. Natl Cancer Inst. 99, 147–157 (2007). This should be compulsory reading for anyone with an interest in gene expression signatures, as it underlines the pitfalls in analysing the expression data.

    PubMed  Article  Google Scholar 

  118. 118

    Ransohoff, D. F. Gene-expression signatures in breast cancer. N. Engl. J. Med. 348, 1715–1717; author reply 1715–1717 (2003).

    PubMed  Article  Google Scholar 

  119. 119

    Simon, R., Radmacher, M. D., Dobbin, K. & McShane, L. M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95, 14–18 (2003).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103, 5923–5928 (2006).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Lavery, I. C. et al. Relationship between tumor gene expression and recurrence in an observational cohort of patients with stage II/III colon cancer treated with surgery only: quantitative RT-PCR assay of 375 genes in fixed paraffin-embedded (FPE) tissue. ASCO Gastrointest. Cancer Symp., Abstr. 302 (2008).

  122. 122

    Gray, R. et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370, 2020–2029 (2007).

    PubMed  Article  Google Scholar 

  123. 123

    Lusa, L. et al. Challenges in projecting clustering results across gene expression-profiling datasets. J. Natl Cancer Inst. 99, 1715–1723 (2007).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Lyman, G. H. & Kuderer, N. M. Gene expression profile assays as predictors of recurrence-free survival in early-stage breast cancer: a metaanalysis. Clin. Breast Cancer 7, 372–379 (2006).

    PubMed  Article  Google Scholar 

  125. 125

    Ioannidis, J. P. Microarrays and molecular research: noise discovery? Lancet 365, 454–455 (2005).

    PubMed  Article  Google Scholar 

  126. 126

    Ransohoff, D. F. Bias as a threat to the validity of cancer molecular-marker research. Nature Rev. Cancer 5, 142–149 (2005).

    CAS  Article  Google Scholar 

  127. 127

    Tomlinson, I. P. et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nature Genet. 40, 623–630 (2008).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Jaeger, E. et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nature Genet. 40, 26–28 (2008).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genet. 39, 645–649 (2007).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genet. 39, 870–874 (2007).

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007). Well-conducted GWAS for risk of myocardial infarction, demonstrating the power of this strategy for novel marker discovery.

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133

    Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genet. 38, 1043–1048 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761, 763 (1997).

    Article  Google Scholar 

  135. 135

    Young, J. et al. Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum. Mutat. 2, 351–354 (1993).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Grady, W. M. & Carethers, J. M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135, 1079–1099 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    CAS  Article  Google Scholar 

  138. 138

    Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 (1998).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Malkhosyan, S., Rampino, N., Yamamoto, H. & Perucho, M. Frameshift mutator mutations. Nature 382, 499–500 (1996).

    CAS  PubMed  Article  Google Scholar 

  140. 140

    Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550 (1995).

    CAS  PubMed  Google Scholar 

  141. 141

    Souza, R. F. et al. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nature Genet. 14, 255–257 (1996).

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).

    CAS  Article  Google Scholar 

  143. 143

    Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    CAS  Article  PubMed  Google Scholar 

  145. 145

    Kemp, Z. et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 65, 11361–11366 (2005).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995).

    CAS  Article  Google Scholar 

  147. 147

    Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    CAS  PubMed  Article  Google Scholar 

  148. 148

    Chung, K. Y. et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 23, 1803–1810 (2005).

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Samowitz, W. S. et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129, 837–845 (2005).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    Cheng, Y. W. et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin. Cancer Res. 14, 6005–6013 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Parker, W. B. & Cheng, Y. C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 48, 381–395 (1990).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

I.T. was funded by the Oxford Comprehensive Biomedical Research Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Kerr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov 

E5202

National Cancer Institute Drug Dictionary 

5-FU

capecitabine

cetuximab

irinotecan

oxaliplatin

panitumumab

trastuzumab

Glossary

Dukes staging system

A staging system based on the depth of invasion of the primary tumour and the presence of lymph node metastasis. Originally described only for rectal cancer, it did not include distant metastasis or unresectable tumours, although both have been addressed in modifications since.

Prognostic marker

A marker that provides information about the natural history of the disease.

Predictive marker

A marker that provides information about the likelihood of response to a treatment.

AJCC staging system

Stage groupings based on the TNM system: depth of primary tumour invasion (T stage), presence and number of lymph node metastases (N stage) and presence of distant metastasis (M stage).

Quantitative marker

A continuous marker that can change its value many fold; for example, gene expression, which increases power for detection with fewer samples, provided there is no noise in the signal.

Discrete marker

A marker that can take one of several — forms for example, a single nucleotide polymorphism — and which may therefore require more samples than a quantitative marker for the same power, but is often more robust in its determination.

Test set

The set of patients in whom a hypothesis is generated, which is then validated in the validation set. The test set is necessary only in unbiased screening approaches, as hypothesis-driven discovery already has a hypothesis to test.

Validation set

The set of patients in whom the hypotheses generated in the test set are studied further, to prove or refute the validity of the initial hypothesis. This step is vital in unbiased approaches as otherwise the test set could merely report chance findings.

Linkage disequilibrium

Deviation from the association that would be expected between two genetic markers if they were subject to random recombination during meiosis, the likelihood of which (without linkage disequilibrium) is a function of the distance between the two markers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walther, A., Johnstone, E., Swanton, C. et al. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9, 489–499 (2009). https://doi.org/10.1038/nrc2645

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing