Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Facilitating replication under stress: an oncogenic function of MYC?

Abstract

Deregulated expression of MYC contributes to the genesis of multiple human tumours. The encoded protein, MYC, functions through the transcriptional regulation of large numbers of target genes. Recent publications show that MYC is closely involved in DNA replication and the checkpoint processes that monitor progress through the S phase, and suggest that limiting replication stress is a key function of this protein. These findings could have considerable implications for our understanding of how MYC transforms cells and which mechanisms protect normal cells from transformation by activated oncogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of MYC function by HIF1α and HIF2α proteins in renal carcinoma.
Figure 2: Interactions of MYC with DNA damage signalling pathways.
Figure 3: Role of MYC at origins of DNA replication

Similar content being viewed by others

References

  1. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  2. Cairo, S. et al. Hepatic stem-like phenotype and interplay of Wnt/β-catenin and Myc signalling in aggressive childhood liver cancer. Cancer Cell 14, 471–484 (2008).

    Article  CAS  Google Scholar 

  3. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumours. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  4. Eilers, M., Schirm, S. & Bishop, J. M. The MYC protein activates transcription of the α-prothymosin gene. EMBO J. 10, 133–141 (1991).

    Article  CAS  Google Scholar 

  5. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function. A mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    Article  CAS  Google Scholar 

  6. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  CAS  Google Scholar 

  7. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    Article  CAS  Google Scholar 

  8. Felsher, D. W., Zetterberg, A., Zhu, J., Tlsty, T. & Bishop, J. M. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc. Natl Acad. Sci. USA 97, 10544–10548 (2000).

    Article  CAS  Google Scholar 

  9. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  Google Scholar 

  10. Mushinski, J. F. et al. Myc-induced cyclin D2 genomic instability in murine B cell neoplasms. Curr. Top. Microbiol. Immunol. 246, 183–189 (1999).

    CAS  PubMed  Google Scholar 

  11. Maclean, K. H., Kastan, M. B. & Cleveland, J. L. Atm deficiency affects both apoptosis and proliferation to augment Myc-induced lymphomagenesis. Mol. Cancer Res. 5, 705–711 (2007).

    Article  CAS  Google Scholar 

  12. Pusapati, R. V. et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc. Natl Acad. Sci. USA 103, 1446–1451 (2006).

    Article  CAS  Google Scholar 

  13. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996–3004 (2007).

    Article  CAS  Google Scholar 

  14. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  Google Scholar 

  15. Shreeram, S. et al. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med. 203, 2793–2799 (2006).

    Article  CAS  Google Scholar 

  16. Dang, C. V., Li, F. & Lee, L. A. Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 4, 1465–1466 (2005).

    Article  CAS  Google Scholar 

  17. Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005).

    Article  CAS  Google Scholar 

  18. Morrish, F. & Hockenbery, D. Myc's mastery of mitochondrial mischief. Cell Cycle 2, 11–13 (2003).

    Article  CAS  Google Scholar 

  19. Ray, S. et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res. 66, 6598–6605 (2006).

    Article  CAS  Google Scholar 

  20. Tanaka, H. et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9, 1017–1029 (2002).

    Article  CAS  Google Scholar 

  21. Gao, P. et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12, 230–238 (2007).

    Article  CAS  Google Scholar 

  22. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  Google Scholar 

  23. Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  Google Scholar 

  24. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279 (2002).

    Article  CAS  Google Scholar 

  25. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  Google Scholar 

  26. Britton, S., Salles, B. & Calsou, P. c-MYC protein is degraded in response to UV irradiation. Cell Cycle 7, 63–70 (2008).

    Article  CAS  Google Scholar 

  27. Herold, S. et al. Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J. 27, 2851–2861 (2008).

    Article  CAS  Google Scholar 

  28. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).

    Article  CAS  Google Scholar 

  29. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  Google Scholar 

  30. Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR–ATRIP complex. Cell 124, 943–955 (2006).

    Article  CAS  Google Scholar 

  31. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  Google Scholar 

  32. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).

    Article  CAS  Google Scholar 

  33. Pickering, M. T., Stadler, B. M. & Kowalik, T. F. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28, 140–145 (2009).

    Article  CAS  Google Scholar 

  34. Steiner, P. et al. Identification of a Myc-dependent step during the formation of active G1 cyclin/cdk complexes. EMBO J. 14, 4814–4826 (1995).

    Article  CAS  Google Scholar 

  35. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J. 15, 6595–6604 (1996).

    Article  CAS  Google Scholar 

  36. Liu, Y. C. et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3, e2722 (2008).

    Article  Google Scholar 

  37. Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  Google Scholar 

  38. Koshiji, M. et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell 17, 793–803 (2005).

    Article  CAS  Google Scholar 

  39. Syljuasen, R. G. et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553–3562 (2005).

    Article  CAS  Google Scholar 

  40. Fang, Y. et al. ATR functions as a gene dosage-dependent tumour suppressor on a mismatch repair-deficient background. EMBO J. 23, 3164–3174 (2004).

    Article  CAS  Google Scholar 

  41. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  42. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  43. Zhuang, D. et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27, 6623–6634 (2008).

    Article  CAS  Google Scholar 

  44. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  Google Scholar 

  45. Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signalling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22, 297–302 (2008).

    Article  CAS  Google Scholar 

  46. Di Micco, R. et al. DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle 7, 3601–3606 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of the authors' laboratory that is described here was supported by grants from the Deutsche Forschungsgemeinschaft via Transregio 17 (“Ras-dependent pathways in human cancer”) and Research Group 531 (“Chromatin-mediated biological decisions”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Martin Eilers' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herold, S., Herkert, B. & Eilers, M. Facilitating replication under stress: an oncogenic function of MYC?. Nat Rev Cancer 9, 441–444 (2009). https://doi.org/10.1038/nrc2640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing