Abstract
Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme capable of inhibiting a destructive maternal T cell response against allogeneic fetuses. Expression of IDO is evident in tumours and is thought to enable escape from immunologically mediated rejection. Consequently, clinical trials using an inhibitor of IDO, 1-methyltryptophan (1MT), have been initiated. However, a review of the current literature indicates that we are far from understanding the biological relevance of IDO expression during tumorigenesis. A better understanding of IDO biology is needed to comprehend the effect of IDO inhibitors and to provide a rationale for their therapeutic application in cancer.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Targeting the tumor stroma for cancer therapy
Molecular Cancer Open Access 02 November 2022
-
Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy
Nature Communications Open Access 16 May 2022
-
Novel drug-target interactions via link prediction and network embedding
BMC Bioinformatics Open Access 04 April 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Moffett, J. R. & Namboodiri, M. A. Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 (2003).
Pfefferkorn, E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).
Yoshida, R. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc. Natl Acad. Sci. USA 75, 3998–4000 (1978).
Yoshida, R., Urade, Y., Tokuda, M. & Hayaishi, O. Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc. Natl Acad. Sci. USA 76, 4084–4086 (1979).
Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).
Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).
Lee, G. K. et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107, 452–460 (2002).
Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).
Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).
Terness, P. et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447–457 (2002).
Fallarino, F. et al. T cell apoptosis by kynurenines. Adv. Exp. Med. Biol. 527, 183–190 (2003).
Chen, W., Liang, X., Peterson, A. J., Munn, D. H. & Blazar, B. R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181, 5396–5404 (2008).
Hayashi, T. et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc. Natl Acad. Sci. USA 104, 18619–18624 (2007).
Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Med. 9, 1269–1274 (2003).
Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature Med. 11, 312–319 (2005).
Prendergast, G. C. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27, 3889–3900 (2008).
Chang, M. Y. et al. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res. 67, 100–107 (2007).
Ge, K. et al. Losses of the tumor suppressor BIN1 in breast carcinoma are frequent and reflect deficits in programmed cell death capacity. Int. J. Cancer 85, 376–383 (2000).
Ge, K. et al. Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Int. J. Cancer 86, 155–161 (2000).
Chang, M. Y. et al. Bin1 ablation increases susceptibility to cancer during aging, particularly lung cancer. Cancer Res. 67, 7605–7612 (2007).
Tajiri, T. et al. Expression of a MYCN-interacting isoform of the tumor suppressor BIN1 is reduced in neuroblastomas with unfavorable biological features. Clin. Cancer Res. 9, 3345–3355 (2003).
Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl Acad. Sci. USA 96, 9689–9694 (1999).
Baban, B. et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int. Immunol. 17, 909–919 (2005).
Fallarino, F. et al. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int. Immunol. 17, 1429–1438 (2005).
Mellor, A. L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).
Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).
Terness, P., Chuang, J. J., Bauer, T., Jiga, L. & Opelz, G. Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105, 2480–2486 (2005).
Terness, P., Chuang, J. J. & Opelz, G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol. 27, 68–73 (2006).
Löb, S. et al. Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic T-cell responses? Transplantation 83, 468–473 (2007).
Lee, J. R. et al. Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab. Invest. 83, 1457–1466 (2003).
Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).
Löb, S. et al. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 58, 153–157 (2009).
Brandacher, G. et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer Res. 12, 1144–1151 (2006).
Pan, K. et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 134, 1247–1253 (2008).
Ishio, T. et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 19, 319–326 (2004).
Riesenberg, R. et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin. Cancer Res. 13, 6993–7002 (2007).
Brandacher, G., Winkler, C., Schroecksnadel, K., Margreiter, R. & Fuchs, D. Antitumoral activity of interferon-γ involved in impaired immune function in cancer patients. Curr. Drug Metab. 7, 599–612 (2006).
Melichar, B., Solichova, D. & Freedman, R. S. Neopterin as an indicator of immune activation and prognosis in patients with gynecological malignancies. Int. J. Gynecol. Cancer 16, 240–252 (2006).
Murr, C. et al. Neopterin as a prognostic parameter in patients with squamous-cell carcinomas of the oral cavity. Int. J. Cancer 79, 476–480 (1998).
Murr, C. et al. Neopterin is an independent prognostic variable in females with breast cancer. Clin. Chem. 45, 1998–2004 (1999).
Murr, C. et al. Increased neopterin concentrations in patients with cancer: indicator of oxidative stress? Anticancer Res. 19, 1721–1728 (1999).
Prommegger, R. et al. Neopterin: a prognostic variable in operations for lung cancer. Ann. Thorac Surg. 70, 1861–1864 (2000).
Weinlich, G., Murr, C., Richardsen, L., Winkler, C. & Fuchs, D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214, 8–14 (2007).
Farrar, M. A. & Schreiber, R. D. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 11, 571–611 (1993).
Ozaki, Y., Edelstein, M. P. & Duch, D. S. Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc. Natl Acad. Sci. USA 85, 1242–1246 (1988).
Takikawa, O., Kuroiwa, T., Yamazaki, F. & Kido, R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 263, 2041–2048 (1988).
Yoshida, R., Park, S. W., Yasui, H. & Takikawa, O. Tryptophan degradation in transplanted tumor cells undergoing rejection. J. Immunol. 141, 2819–2823 (1988).
Yu, W. G. et al. Molecular mechanisms underlying IFN-γ-mediated tumor growth inhibition induced during tumor immunotherapy with rIL-12. Int. Immunol. 8, 855–865 (1996).
Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230 (1993).
Nastala, C. L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J. Immunol. 153, 1697–1706 (1994).
Zou, J. P. et al. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-γ production by anti-tumor T cells. Int. Immunol. 7, 1135–1145 (1995).
Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).
Hou, D. Y. et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67, 792–801 (2007).
Windbichler, G. H. et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer 82, 1138–1144 (2000).
Giannopoulos, A. et al. The immunomodulating effect of interferon-γ intravesical instillations in preventing bladder cancer recurrence. Clin. Cancer Res. 9, 5550–5558 (2003).
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).
Takeshita, F. et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).
Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).
Mellor, A. L. et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J. Immunol. 175, 5601–5605 (2005).
Wingender, G. et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur. J. Immunol. 36, 12–20 (2006).
Fallarino, F. & Puccetti, P. Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism. Eur. J. Immunol. 36, 8–11 (2006).
Choi, B. K., Asai, T., Vinay, D. S., Kim, Y. H. & Kwon, B. S. 4-1BB-mediated amelioration of experimental autoimmune uveoretinitis is caused by indoleamine 2,3-dioxygenase-dependent mechanisms. Cytokine 34, 233–242 (2006).
Mittler, R. S. et al. Anti-CD137 antibodies in the treatment of autoimmune disease and cancer. Immunol. Res. 29, 197–208 (2004).
Seo, S. K. et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nature Med. 10, 1088–1094 (2004).
Kim, J. A. et al. Divergent effects of 4–1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res. 61, 2031–2037 (2001).
May, K. F. Jr., Chen, L., Zheng, P. & Liu, Y. Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res. 62, 3459–3465 (2002).
Melero, I., Johnston, J. V., Shufford, W. W., Mittler, R. S. & Chen, L. NK1.1 cells express 4–1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol. 190, 167–172 (1998).
Melero, I. et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).
Nam, K. O., Kang, W. J., Kwon, B. S., Kim, S. J. & Lee, H. W. The therapeutic potential of 4–1BB (CD137) in cancer. Curr. Cancer Drug Targets 5, 357–363 (2005).
Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).
Knox, W. E. & Mehler, A. H. The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J. Biol. Chem. 187, 419–430 (1950).
Minatogawa, Y., Suzuki, S., Ando, Y., Tone, S. & Takikawa, O. Tryptophan pyrrole ring cleavage enzymes in placenta. Adv. Exp. Med. Biol. 527, 425–434 (2003).
Tatsumi, K. et al. Induction of tryptophan 2,3-dioxygenase in the mouse endometrium during implantation. Biochem. Biophys. Res. Commun. 274, 166–170 (2000).
Suzuki, S. et al. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem. J. 355, 425–429 (2001).
Britan, A., Maffre, V., Tone, S. & Drevet, J. R. Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res. 324, 301–310 (2006).
Haber, R., Bessette, D., Hulihan-Giblin, B., Durcan, M. J. & Goldman, D. Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J. Neurochem. 60, 1159–1162 (1993).
Yamamoto, S. & Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 242, 5260–5266 (1967).
Yoshida, R. et al. Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Arch. Biochem. Biophys. 203, 343–351 (1980).
Yuasa, H. J. et al. Evolution of vertebrate indoleamine 2,3-dioxygenases. J. Mol. Evol. 65, 705–714 (2007).
Yamane, T., Miller, D. L. & Hopfield, J. J. Discrimination between D- and L-tyrosyl transfer ribonucleic acids in peptide chain elongation. Biochemistry 20, 7059–7064 (1981).
Cady, S. G. & Sono, M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch. Biochem. Biophys. 291, 326–333 (1991).
Peterson, A. C. et al. Evaluation of functionalized tryptophan derivates and related compounds as competitive inhibitors of indoleamine 2,3-dioxygenase. Med. Chem. Res. 3, 531–544 (1994).
Metz, R. et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 67, 7082–7087 (2007).
Ball, H. J. et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396, 203–213 (2007).
Lob, S. et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111, 2152–2154 (2008).
Katz, J. B., Muller, A. J. & Prendergast, G. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222, 206–221 (2008).
Agaugue, S., Perrin-Cocon, L., Coutant, F., Andre, P. & Lotteau, V. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J. Immunol. 177, 2061–2071 (2006).
Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).
Kudo, Y. & Boyd, C. A. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J. Physiol. 531, 405–416 (2001).
Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood 109, 2871–2877 (2007).
Okamoto, T. et al. Transcriptional regulation of indoleamine 2,3-dioxygenase (IDO) by tryptophan and its analogue: Down-regulation of the indoleamine 2,3-dioxygenase (IDO) transcription by tryptophan and its analogue. Cytotechnology 54, 107–113 (2007).
Alvarez-Salas, L. M. Nucleic acids as therapeutic agents. Curr. Top. Med. Chem. 8, 1379–1404 (2008).
Dalmay, T. MicroRNAs and cancer. J. Intern. Med. 263, 366–375 (2008).
Huang, C., Li, M., Chen, C. & Yao, Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin. Ther. Targets. 12, 637–645 (2008).
Mocellin, S., Costa, R. & Nitti, D. RNA interference: ready to silence cancer? J. Mol. Med. 84, 4–15 (2006).
Moreira, J. N., Santos, A. & Simoes, S. Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev. Recent Clin. Trials 1, 217–235 (2006).
Zheng, X. et al. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J. Immunol. 177, 5639–5646 (2006).
Jeong, Y. I. et al. (–)-Epigallocatechin gallate suppresses indoleamine 2,3-dioxygenase expression in murine dendritic cells: evidences for the COX-2 and STAT1 as potential targets. Biochem. Biophys. Res. Commun. 354, 1004–1009 (2007).
Lee, H. J. et al. Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem. Pharmacol. 73, 1412–1421 (2007).
Kim, S. I. et al. p-Coumaric acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Int. Immunopharmacol 7, 805–815 (2007).
Mehta, R. G. et al. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis 16, 399–404 (1995).
Park, E. J. & Pezzuto, J. M. Botanicals in cancer chemoprevention. Cancer Metastasis Rev. 21, 231–255 (2002).
Banerjee, T. et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene 27, 2851–2857 (2008).
Gaspari, P. et al. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem. 49, 684–692 (2006).
Brastianos, H. C. et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J. Am. Chem. Soc. 128, 16046–16047 (2006).
Carr, G., Chung, M. K., Mauk, A. G. & Andersen, R. J. Synthesis of indoleamine 2,3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J. Med. Chem. 51, 2634–2637 (2008).
Kumar, S. et al. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J. Med. Chem. 51, 4968–4977 (2008).
Pereira, A., Vottero, E., Roberge, M., Mauk, A. G. & Andersen, R. J. Indoleamine 2,3-dioxygenase inhibitors from the Northeastern Pacific marine hydroid Garveia annulata. J. Nat. Prod. 69, 1496–1499 (2006).
Sugimoto, H. et al. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc. Natl Acad. Sci. USA 103, 2611–2616 (2006).
Boasso, A. et al. Combined effect of antiretroviral therapy and blockade of IDO in SIV-infected rhesus macaques. J. Immunol. 182, 4313–4320 (2009).
Ogata, S. et al. Apoptosis induced by nicotinamide-related compounds and quinolinic acid in HL-60 cells. Biosci. Biotechnol. Biochem. 64, 327–332 (2000).
Braun, D., Longman, R. S. & Albert, M. L. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106, 2375–2381 (2005).
Lopez, A. S., Alegre, E., Diaz, A., Mugueta, C. & Gonzalez, A. Bimodal effect of nitric oxide in the enzymatic activity of indoleamine 2,3-dioxygenase in human monocytic cells. Immunol. Lett. 106, 163–171 (2006).
Belladonna, M. L. et al. Cutting edge: Autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 181, 5194–5198 (2008).
Gura, T. How embryos may avoid immune attack. Science 281, 1122–1124 (1998).
Kotake, Y. & Masayama, I. The intermediary metabolism of tryptophan XVIII. The mechanism of formation of kynurenine from tryptophan Z. Physiol. Chem. 243, 237–244 (1936).
Thackray, S. J., Mowat, C. G. & Chapman, S. K. Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochem. Soc. Trans. 36, 1120–1123 (2008).
Zhang, Y. et al. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Biochemistry 46, 145–155 (2007).
Beutelspacher, S. C. et al. Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am. J. Transplant 6, 1320–1330 (2006).
Pantoja, L. G., Miller, R. D., Ramirez, J. A., Molestina, R. E. & Summersgill, J. T. Inhibition of Chlamydia pneumoniae replication in human aortic smooth muscle cells by gamma interferon-induced indoleamine 2,3-dioxygenase activity. Infect. Immun. 68, 6478–6481 (2000).
Oberdorfer, C., Adams, O., MacKenzie, C. R., De Groot, C. J. & Daubener, W. Role of IDO activation in anti-microbial defense in human native astrocytes. Adv. Exp. Med. Biol. 527, 15–26 (2003).
Della Chiesa, M. et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118–4125 (2006).
Hwu, P. et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164, 3596–3599 (2000).
Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003).
Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).
Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Med. 13, 579–586 (2007).
Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunol. 5, 1134–1142 (2004).
Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752–6761 (2006).
Molano, A., Illarionov, P. A., Besra, G. S., Putterman, C. & Porcelli, S. A. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase. Immunol. Lett. 117, 81–90 (2008).
Adikari, S. B., Lian, H., Link, H., Huang, Y. M. & Xiao, B. G. Interferon-γ-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. Clin. Exp. Immunol. 138, 230–236 (2004).
Ino, K. et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br. J. Cancer 95, 1555–1561 (2006).
Takao, M. et al. Increased synthesis of indoleamine-2,3-dioxygenase protein is positively associated with impaired survival in patients with serous-type, but not with other types of, ovarian cancer. Oncol. Rep. 17, 1333–1339 (2007).
Acknowledgements
The authors thank K. Dennehy for substantial help with editing the manuscript. S.L. was supported by a Fortüne grant of from the University of Tübingen, Tübingen, Germany (1767-0-0).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
ClinicalTrials.gov
National Cancer Institute Drug Dictionary
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Löb, S., Königsrainer, A., Rammensee, HG. et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees?. Nat Rev Cancer 9, 445–452 (2009). https://doi.org/10.1038/nrc2639
Issue Date:
DOI: https://doi.org/10.1038/nrc2639
This article is cited by
-
Novel drug-target interactions via link prediction and network embedding
BMC Bioinformatics (2022)
-
Targeting the tumor stroma for cancer therapy
Molecular Cancer (2022)
-
Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy
Nature Communications (2022)
-
Nanosized drug delivery systems modulate the immunosuppressive microenvironment to improve cancer immunotherapy
Acta Pharmacologica Sinica (2022)
-
What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past
Journal of Experimental & Clinical Cancer Research (2021)