Tumour necrosis factor and cancer

Abstract

Tumour necrosis factor (TNF) is a major inflammatory cytokine that was first identified for its ability to induce rapid haemorrhagic necrosis of experimental cancers. When efforts to harness this anti-tumour activity in cancer treatments were underway, a paradoxical tumour-promoting role of TNF became apparent. Now that links between inflammation and cancer are appreciated, is TNF a target or a therapeutic in malignant disease — or both?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Treatment with Coley's toxins.
Figure 2: The pro- and anti-tumour actions of tumour necrosis factor (TNF) in mouse models of cancer.
Figure 3: Pro-tumour actions of tumour necrosis factor (TNF) in the tumour microenvironment.

References

  1. 1

    Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumours. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

  2. 2

    Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

  3. 3

    Nauts, H. C., Swift, W. E. & Coley, B. L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D. Reviewed in the light of modern research. Cancer Res. 6, 205–216 (1946).

  4. 4

    Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

  5. 5

    Moore, R. et al. Tumour necrosis factor-α deficient mice are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

  6. 6

    Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 4461–4466 (2004).

  7. 7

    Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 25, 409–416 (2006).

  8. 8

    Sethi, G., Sung, B. & Aggarwal, B. B. TNF: a master switch for inflammation to cancer. Front. Biosci. 13, 5094–5107 (2008).

  9. 9

    Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nature Rev. Immunol. 2, 364–371 (2002).

  10. 10

    Sands, B. E. et al. Infliximab maintenance therapy for fistulizing Crohn's disease. N. Engl. J. Med. 350, 876–885 (2004).

  11. 11

    Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Therapeut. 117, 244–279 (2008).

  12. 12

    Madhusudan, S. et al. A phase II study of Etanercept (Enbrel), a tumour necrosis factor-α inhibitor in patients with metastatic breast cancer. Clin. Cancer Res. 10, 6528–6534 (2004).

  13. 13

    Madhusudan, S. et al. A phase II study of Ethanercept (ENBREL) a tumour necrosis factor- α inhibitor in recurrent ovarian cancer. J. Clin. Oncol. 23, 5950–5959 (2005).

  14. 14

    Harrison, M. L. et al. Tumor necrosis factor α as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007).

  15. 15

    Brown, E. R. et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann. Oncol. 19, 1340–1346 (2008).

  16. 16

    Daniel, D. & Wilson, N. S. Tumor necrosis factor: renaissance as a cancer therapeutic? Curr. Cancer Drug Targets. 8, 124–131 (2008).

  17. 17

    Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the bacillus prodigiosus). Proc. R. Soc. Med. 3 (Surg. Sect), 1–48 (1909).

  18. 18

    Hall, S. S. A Commotion in the Blood 21–127 (Henry Holt, New York, 1997).

  19. 19

    Coley, W. B. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

  20. 20

    Coley, W. B. Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus. Am. J. Med. Sci. 131, 375–430 (1906).

  21. 21

    Coley Nauts, H., Fowler, G. A. & Bogatko, F. H. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man. Acta Med. Scand., 29–97 (1953).

  22. 22

    Gratia, A. & Linz, R. Le phenomenene de Schwartzman dans le sarcome du cobaye. C R. Soc. Biol. 108, 427–428 (1931) (in French).

  23. 23

    Shear, M. J. & Perrault, A. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J. Natl Cancer Inst. 44, 461–476 (1944).

  24. 24

    O'Malley, W. E., Achinstein, B. & Shear, M. J. Action of bacterial polysaccharide on tumours. II. Damage of sarcoma 37 by serum of mice treated with serratia marcescens polysaccharide, and induced tolerance. J. Natl Cancer Inst. 29, 1169–1175 (1962).

  25. 25

    Granger, G. A. & Kolb, W. P. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction. J. Immunol. 101, 111–120 (1968).

  26. 26

    Aggarwal, B. B. et al. Human tumor necrosis factor. Production, purification, and characterisation. J. Biol. Chem. 260, 2345–2354 (1985).

  27. 27

    Aggarwal, B. B., Moffat, B. & Harkins, R. N. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J. Biol. Chem. 259, 686–691 (1984).

  28. 28

    Aggarwal, B. B., Henzel, W. J., Moffat, B., Kohr, W. J. & Harkins, R. N. Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J. Biol. Chem. 260, 2334–2344 (1985).

  29. 29

    Aggarwal, B. B., Eessalu, T. E. & Hass, P. E. Characterization of receptors for human tumour necrosis factor and their regulation by γ-interferon. Nature 318, 665–667 (1985).

  30. 30

    Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

  31. 31

    Gray, P. W. et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 312, 721–724 (1984).

  32. 32

    Marmenout, A. et al. Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. Eur. J. Biochem. 152, 515–522 (1985).

  33. 33

    Fransen, L. et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res. 13, 4417–4429 (1985).

  34. 34

    Hahn, T. et al. Use of monoclonal antibodies to a human cytotoxin for its isolation and for examining the self induction of resistance to this protein. Proc. Natl Acad. Sci. USA 82, 3814–3818 (1985).

  35. 35

    Hehlgans, T. & Pfeffer, K. The intriguing biology of the tumor necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115, 1–20 (2005).

  36. 36

    Dillon, S. R., Gross, J. A., Ansell, S. M. & Novak, A. J. An APRIL to remember: novel TNF ligands as therapeutic targets. Nature Rev. Drug Discov. 5, 235–242 (2006).

  37. 37

    Sabbagh, L., Snell, L. M. & Watts, T. H. TNF family ligands define niches for T cell memory. Trends Immunol. 28, 333–339 (2007).

  38. 38

    Engelmann, H., Aderka, D., Rubinstein, M., Rotman, D. & Wallach, D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 264, 11974–11980 (1989).

  39. 39

    Engelmann, H., Novick, D. & Wallach, D. Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J. Biol. Chem. 265, 1531–1536 (1990).

  40. 40

    Loetscher, H. et al. Molecular cloning and expression of the human 55 KD tumor necrosis factor receptor. Cell 61, 351–359 (1990).

  41. 41

    Schall, T. J. et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370 (1990).

  42. 42

    Smith, C. A. et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023 (1990).

  43. 43

    Heller, R. A. et al. Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc. Natl Acad. Sci. USA 87, 6151–6155 (1990).

  44. 44

    Beutler, B. A. The role of tumor necrosis factor in health and disease. J. Rheumatol. 26, 16–21 (1999).

  45. 45

    Feldmann, M. Many cytokines are very useful therapeutic targets in disease. J. Clin. Invest. 118, 3533–3536 (2008).

  46. 46

    Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor a (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

  47. 47

    Brouckaert, P. G. G., Leroux-Roels, G. G., Guisez, Y., Tavernier, J. & Fiers, W. In vivo anti-tumour activity of recombinant human and murine TNF, alone and in combination with murine IFN-gamma on a syngeneic murine melanoma. Int. J. Cancer 38, 763–769 (1986).

  48. 48

    Balkwill, F. R. et al. Human tumour xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res. 46, 3990–3993 (1986).

  49. 49

    Talmadge, J. E. et al. Immunomodulatory properties of recombinant murine and human tumor necrosis factor. Cancer Res. 48, 544–550 (1988).

  50. 50

    Watanabe, N. et al. Synergistic cytotoxic and antitumour effects of recombinant tumour necrosis factor and hyperthermia. Cancer Res. 48, 650–653 (1988).

  51. 51

    Nawroth, P. et al. Tumor necrosis factor/cachectin-induced intravascular fibrin formation in meth A fibrosarcomas. J. Exp. Med. 168, 637–647 (1988).

  52. 52

    Mantovani, A. & Dejana, E. Cytokines as communication signals between leukocytes and endothelial cells. Immunol. Today 10, 370–375 (1989).

  53. 53

    Kettlehut, I. C., Fiers, W. & Goldberg, A. L. The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc. Natl Acad. Sci. USA 84, 4273–4277 (1987).

  54. 54

    Havell, E. A., Fiers, W. & North, R. J. The antitumor function of tumor necrosis factor (TNF). 1. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J. Exp. Med. 167, 1067–1085 (1988).

  55. 55

    Lienard, D., Ewalenko, P., Delmotte, J.-J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10, 52–60 (1992).

  56. 56

    Nooijen, P. T. et al. Synergistic effects of TNF-alpha and melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological, immunohistochemical and electron microscopical study. Br. J. Cancer 74, 1908–1915 (1996).

  57. 57

    de Wilt, J. H. et al. Prerequisites for effective isolated limb perfusion using tumour necrosis factor alpha and melphalan in rats. Br. J. Cancer 80, 161–166 (1999).

  58. 58

    van der Veen, A. H. et al. TNF-α augments intratumoural concentrations of doxorubicin in TNF-α-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour efects. Br. J. Cancer 82, 973–980 (2000).

  59. 59

    Seynhaeve, A. L. et al. Tumor necrosis factor α mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res. 67, 9455–9462 (2007).

  60. 60

    Colotta, F., Peri, G., Villa, A. & Mantovani, A. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. 1. Effectors belong to the monocyte-macrophage lineage. J. Immunol. 132, 936–944 (1984).

  61. 61

    Sugarman, B. J. et al. Recombinant human tumor necrosis factor alpha: effects on proliferation of normal and transformed cells in vitro. Science 230, 943–945 (1985).

  62. 62

    Dealtry, G. B., Naylor, M. S., Fiers, W. & Balkwill, F. R. The effect of recombinant human tumour necrosis factor on growth and macromolecular synthesis of human epithelial cells. Exp. Cell Res. 170, 428–438 (1987).

  63. 63

    Fransen, L., Van der Heyden, J., Ruysschaert, R. & Fiers, W. Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur. J. Cancer Clin. Oncol. 22, 419–426 (1986).

  64. 64

    Williamson, B. D., Carswell, E. A., Rubin, B. Y. & Prendergast, J. S. Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferons. Proc. Natl Acad. Sci. USA 80, 5397–5401 (1983).

  65. 65

    Wallach, D. Preparations of lymphotoxin induce resistance to their own cytotoxic effect. J. Immunol. 132, 2464–2469 (1984).

  66. 66

    Palladino, M. A. Jr et al. Characterization of the antitumor activities of human tumor necrosis factor alpha and the comparison with other cytokines: induction of tumor-specific immunity. J. Immunol. 138, 4023–4032 (1987).

  67. 67

    Kashii, Y., Giorda, R., Herberman, R. B., Whiteside, T. L. & Vujanovic, N. L. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J. Immunol. 163, 5358–5366 (1999).

  68. 68

    Prevost-Blondel, A., Roth, E., Rosenthal, F. M. & Pircher, H. Crucial role of TNF-α in CD8 cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J. Immunol. 164, 3645–3651 (2000).

  69. 69

    Baxevanis, C. N., Voutsas, I. F., Tsitsilonis, O. E., Tsiatas, D. G. & Papmichail, M. Compromised anti-tumor responses in tumor necrosis factor-α knockout mice. Eur. J. Immunol. 30, 1957–1966 (2000).

  70. 70

    Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

  71. 71

    Selby, P. et al. Tumour necrosis factor in man: clinical and biological observations. Br. J. Cancer 56, 803–808 (1987).

  72. 72

    Creagan, E. T., Kovach, J. S., Moertel, C. G., Frytak, S. & Kvols, L. K. A phase 1 clinical trial of recombinant human tumor necrosis factor. Cancer 62, 2467–2471 (1988).

  73. 73

    Kimura, K. et al. Phase 1 study of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 223–229 (1987).

  74. 74

    Blick, M., Sherwin, S. A., Rosenblum, M. & Gutterman, J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 47, 2986–2989 (1987).

  75. 75

    Morice, R. C., Blick, M. B., Ali, M. K. & Gutterman, J. U. Pulmonary toxicity of recombinant tumor necrosis factor (rTNF). Proc. Am. Soc. Clin. Oncol. 6, 29 (1987).

  76. 76

    Verhoef, C. et al. Isolated limb perfusion with melphalan and TNF-α in the treatment of extremity sarcoma. Curr. Treat. Options Oncol. 8, 417–427 (2007).

  77. 77

    Grunhagen, D. J. et al. Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-α and melphalan for limb-threatening soft tissue sarcoma. Cancer 106, 1776–1784 (2006).

  78. 78

    Starnes, C. O. Coley's toxins in perspective. Nature 357, 11–12 (1992).

  79. 79

    Spriggs, D., Imamura, K., Rodriguez, C., Horiguchi, J. & Kufe, D. W. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc. Natl Acad. Sci. USA 84, 6563–6566 (1987).

  80. 80

    Beissert, S. et al. Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma: In vivo analysis by in situ hybridization. Proc. Natl Acad. Sci. USA 86, 5064–5086 (1989).

  81. 81

    Naylor, M. S., Malik, S. T. A., Stamp, G. W. H., Jobling, T. & Balkwill, F. R. In situ detection of tumour necrosis factor in human ovarian cancer specimens. Eur. J. Cancer 26, 1027–1030 (1990).

  82. 82

    Naylor, M. S., Stamp, G. W. H., Foulkes, W. D., Eccles, D. & Balkwill, F. R. Tumor necrosis factor and its receptors in human ovarian cancer. J. Clin. Invest. 91, 2194–2206 (1993).

  83. 83

    Karayiannakis, A. J. et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res. 21, 1355–1358 (2001).

  84. 84

    Yoshida, N. et al. Interleukin-6, tumour necrosis factor α and interleukin-1β in patients with renal cell carcinoma. Br. J. Cancer 86, 1396–1400 (2002).

  85. 85

    Ferrajoli, A. et al. The clinical significance of tumor necrosis factor-a plasma level in patients having chronic lymphocytic leukemia. Blood 100, 1215–1219 (2002).

  86. 86

    Bozcuk, H. et al. Tumour necrosis factor-alpha, interleukin-6, and fasting serum insulin correlate with clinical outcome in metastatic breast cancer patients treated with chemotherapy. Cytokine 27, 58–65 (2004).

  87. 87

    Anderson, G. M., Nakada, M. T. & DeWitte, M. Tumor necrosis factor-α in the pathogenesis and treatment of cancer. Curr. Opin. Pharmacol. 4, 314–320 (2004).

  88. 88

    Pfitzenmaier, J. et al. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97, 1211–1216 (2003).

  89. 89

    Michalaki, V., Syrigos, K., Charles, P. & Waxman, J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer 91, 1227 (2004).

  90. 90

    Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. & Bohlen, P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl Acad. Sci. USA 84, 5277–5281 (1987).

  91. 91

    Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor alpha. Nature 329, 630–632 (1987).

  92. 92

    Malik, S. T. A., Griffin, D. B., Fiers, W. & Balkwill, F. R. Paradoxical, effects of tumour necrosis factor in experimental ovarian cancer. Int. J. Cancer 44, 918–925 (1989).

  93. 93

    Malik, S. T. A., Naylor, S., East, N., Oliff, A. & Balkwill, F. R. Cells secreting tumour necrosis factor show enhanced metastasis in nude mice. Eur. J. Cancer 26, 1031–1034 (1990).

  94. 94

    Orosz, P. et al. Enhancement of experimental metastasis by tumor necrosis factor. J. Exp. Med. 177, 1391–1398 (1993).

  95. 95

    Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

  96. 96

    Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

  97. 97

    Virchow, R. Die krankhaften Geschwulste (1863).

  98. 98

    Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow. Lancet 357, 539–545 (2001).

  99. 99

    Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

  100. 100

    Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

  101. 101

    Suganuma, M. et al. Essential role of tumor necrosis factor α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res. 59, 4516–4518 (1999).

  102. 102

    Kulbe, H. et al. The inflammatory cytokine TNF-α generates an autocrine tumour-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

  103. 103

    Egberts, J.-H. et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 68, 1443–1450 (2008).

  104. 104

    Stathopoulos, G. T. et al. Tumor necrosis factor-α promotes malignant pleural effusion. Cancer Res. 67, 9825–9834 (2007).

  105. 105

    Zins, K., Abraham, D., Sioud, M. & Aharinejad, S. Colon cancer cell-derived tumor necrosis factor-α mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res. 67, 1038–1045 (2007).

  106. 106

    Li, B. et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 69, 338–348 (2009).

  107. 107

    Hagemann, T. et al. TNF-α dependent increased c-Jun and NF-κB activity in tumour cell lines upon co-cultivation with macrophages. J. Immunol. 175, 1197–1205 (2005).

  108. 108

    Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032 (2006).

  109. 109

    Szlosarek, P. W. et al. Expression and regulation of tumor necrosis factor-α in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).

  110. 110

    Galban, S. et al. von Hippel–Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. Mol. Cell. Biol. 23, 2316–2328 (2003).

  111. 111

    Suganuma, M., Kuzuhara, T., Yamaguchi, K. & Fujiki, H. Carcinogenic role of tumor necrosis factor-α inducing protein of Helicobacter pylori in human stomach. J. Biochem. Mol. Biol. 39, 1–8 (2006).

  112. 112

    Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

  113. 113

    Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

  114. 114

    Oguma, K. et al. Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastic tumour cells. EMBO J. 27, 1671–1681 (2008).

  115. 115

    Komori, A. et al. Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation. Cancer Res. 53, 1982–1985 (1993).

  116. 116

    Li, J. et al. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J. Clin. Invest. 117, 3283–3295 (2007).

  117. 117

    Yan, B. et al. Tumor necrosis factor-α is a potent endogenous mutagen that promotes cellular transformation. Cancer Res. 66, 11565–11570 (2006).

  118. 118

    Babbar, N. & Casero, R. A. Jr. Tumor necrosis factor-α increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res. 66, 11125–11130 (2006).

  119. 119

    Komori, J. et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47, 888–896 (2008).

  120. 120

    Akiyama, M. et al. Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 63, 18–21 (2003).

  121. 121

    Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

  122. 122

    Arnott, C. H. et al. Expression of both TNF-a receptor subtypes is essential for optimal skin tumour development. Oncogene 23, 1902–1910 (2004).

  123. 123

    Tomita, Y. et al. Spontaneous regression of lung metastasis in the absence of tumour necrosis factor p55. Int. J. Cancer 112, 927–933 (2004).

  124. 124

    Kitakata, H. et al. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res. 62, 6682–6687 (2002).

  125. 125

    Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008).

  126. 126

    Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. Z. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

  127. 127

    Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

  128. 128

    Liu, Z.-G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

  129. 129

    Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

  130. 130

    Lee, D.-F. et al. IKKB suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

  131. 131

    Scott, K. A. et al. An anti-TNF-α antibody inhibits the development of experimental skin tumors. Mol. Cancer Ther. 2, 445–451 (2003).

  132. 132

    Rao, V. P. et al. Proinflammatory CD4+CD45RBhi lymphocytes promote mammary and intestinal carcinogenesis in ApcMin/+ mice. Cancer Res. 66, 57–61 (2006).

  133. 133

    Stasi, R., Amadori, S., Newland, A. C. & Provan, D. Infliximab chimeric antitumor necrosis factor-a monoclonal antibody as potential treatment of myelodysplastic syndromes. Leuk. Lymphoma 46, 509–516 (2005).

  134. 134

    Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

  135. 135

    Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

  136. 136

    Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature, 442, 461–465 (2006).

  137. 137

    Fujiki, H. et al. New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mut. Res. 523, 119–125 (2003).

  138. 138

    Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies. JAMA 295, 2275–2285 (2006).

  139. 139

    Askling, J. & Bongartz, T. Malignancy and biologic therapy in rheumatoid arthritis. Curr. Opin. Rheumatol. 20, 334–339 (2008).

  140. 140

    Creagh, E. M. & O'Neill, L. A. J. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27, 352–357 (2006).

  141. 141

    Alexandroff, A. B., Jackson, A. M., O'Donnell, M. A. & James, K. BCG immunotherapy of bladder cancer: 20 years on. Lancet 353, 1689–1694 (1999).

  142. 142

    Hagemann, T. et al. 'Re-educating' tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008).

  143. 143

    Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

  144. 144

    Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

  145. 145

    Koebel, M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

  146. 146

    Senzer, N. et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J. Clin. Oncol. 22, 592–601 (2004).

  147. 147

    Mauceri, H. J. et al. Translational strategies exploiting TNF-α that sensitize tumors to radiation therapy. Cancer Gene Ther. 31 Oct 2008 (doi:10.1038/cgt.2008.86).

  148. 148

    Krippner-Heidenreich, A. et al. Single chain TNF, a TNF derivative with enhanced stability and antitumoral activity. J. Immunol. 180, 8176–8183 (2008).

  149. 149

    Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

  150. 150

    Charles, P. et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-α therapy in rheumatoid arthritis. J. Immunol. 163, 1521–1528 (1999).

  151. 151

    Gray-Schopfer, V. C., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 67, 122–129 (2007).

  152. 152

    Gordon, G. J. et al. Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-a in malignant pleural mesothelioma. J. Pathol. 211, 439–446 (2007).

  153. 153

    Varfolomeev, E. E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491–497 (2004).

  154. 154

    Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

  155. 155

    Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

  156. 156

    Tsenova, L., Bergtold, A., Freedman, V. H., Young, R. A. & Kaplan, G. Tumour necrosis factor α is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc. Natl Acad. Sci. USA 96, 5657–5662 (1999).

  157. 157

    Schluter, D. et al. Both lymphotoxin-α and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J. Immunol. 170, 6172–6182 (2003).

  158. 158

    Pasparakis, M. et al. Peyer's patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc. Natl Acad. Sci. USA 94, 6319–6323 (1997).

  159. 159

    Kuprash, D. V. et al. Novel tumor necrosis factor-knockout mice that lack Peyer's patches. Eur. J. Immunol. 35, 1592–1600 (2005).

  160. 160

    Grivennikov, S. I. et al. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22, 93–104 (2005).

  161. 161

    Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachetin. Nature 316, 552–554 (1985).

  162. 162

    Brennan, F. M., Jackson, A., Chantry, D., Maini, R. & Feldmann, M. Inhibitory effect of TNF-alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

  163. 163

    Williams, R. O., Feldmann, M. & Maini, R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 89, 9784–9788 (1992).

  164. 164

    van Deventer, S. J. Anti-TNF antibody treatment of Crohn's disease. Ann. Rheum. Dis. 58, 14–20 (1999).

  165. 165

    Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390 (2000).

  166. 166

    Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

  167. 167

    Berry, M. A. et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 354, 697–708 (2006).

  168. 168

    Ashkenazi, A. Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

  169. 169

    Gray, P. W., Barret, K., Chantry, D., Turner, M. & Feldmann, M. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein. Proc. Natl Acad. Sci. USA 87, 7380–7384 (1990).

  170. 170

    Heller, R. A. et al. Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein–Barr virus shuttle vector cDNA libraries. J. Biol. Chem. 265, 5708–5717 (1990).

  171. 171

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

Download references

Acknowledgements

The author would like to thank members of the Centre for Cancer and Inflammation at Barts and The London Medical School and also A. Mantovani for useful discussions and criticism.

Author information

Ethics declarations

Competing interests

F.B. has funding from Ortho Biotech Oncology, who make the anti-TNF antibody infliximab. They currently fund a 1-year postdoctoral position in her laboratory.

Supplementary information

Supplementary information S1 (box)

TNF and TNF receptor superfamilies (PDF 116 kb)

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

actinomycin D

bevacizumab

doxorubicin

etanercept

infliximab

melphalan

mitomycin C

FURTHER INFORMATION

Frances Balkwill's homepage

MolMed

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balkwill, F. Tumour necrosis factor and cancer. Nat Rev Cancer 9, 361–371 (2009). https://doi.org/10.1038/nrc2628

Download citation

Further reading