Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Non-coding RNA production by RNA polymerase III is implicated in cancer

A Corrigendum to this article was published on 13 September 2012

Abstract

RNA polymerase III (Pol III) makes a variety of small non-coding RNAs, such as tRNA and 5S ribosomal RNA. Increased expression of pol III products is often observed in transformed cells. Much progress has been made in determining how Pol III-dependent transcription is regulated and how it increases in cancers, but the importance of this increase has not been clearly established. New evidence suggests that Pol III output can substantially affect transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA polymerase III (Pol III) transcription complex assembly is stimulated by PI3K and Akt signalling and inhibited by PTEN.
Figure 2: The transcription factor TFIIIB is a target for many regulators that have been implicated in cancer.

Similar content being viewed by others

References

  1. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    Article  CAS  Google Scholar 

  2. Thiel, C. T. et al. Severely incapacitating mutations in patients with extreme short stature identify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am. J. Hum. Genet. 77, 795–806 (2005).

    Article  CAS  Google Scholar 

  3. Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

    Article  CAS  Google Scholar 

  4. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    Article  CAS  Google Scholar 

  5. Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    Article  CAS  Google Scholar 

  6. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol. 13, 1097–1101 (2006).

    CAS  Google Scholar 

  7. Schwartz, L. B., Sklar, V. E. F., Jaehning, S. J., Weinmann, R. & Roeder, R. G. Isolation and partial characterization of the multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in mouse myeloma MOPC 315. J. Biol. Chem. 249, 5889–5897 (1974).

    CAS  PubMed  Google Scholar 

  8. Winter, A. G. et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumours. Proc. Natl Acad. Sci. USA 97, 12619–12624 (2000).

    Article  CAS  Google Scholar 

  9. Chen, W., Bocker, W., Brosius, J. & Tiedge, H. Expression of neural BC200 RNA in human tumours. J. Pathol. 183, 345–351 (1997).

    Article  CAS  Google Scholar 

  10. White, R. J. RNA polymerase III transcription and cancer. Oncogene 23, 3208–3216 (2004).

    Article  CAS  Google Scholar 

  11. Woiwode, A. et al. PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex. Mol. Cell. Biol. 28, 4204–4214 (2008).

    Article  CAS  Google Scholar 

  12. Chesnokov, I., Chu, W.-M., Botchan, M. R. & Schmid, C. W. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 16, 7084–7088 (1996).

    Article  CAS  Google Scholar 

  13. Sutcliffe, J. E. et al. RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol. Cell. Biol. 19, 4255–4261 (1999).

    Article  CAS  Google Scholar 

  14. Sutcliffe, J. E., Brown, T. R. P., Allison, S. J., Scott, P. H. & White, R. J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    Article  CAS  Google Scholar 

  15. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  Google Scholar 

  16. Hirsch, H. A., Jawdekar, G. W., Lee, K.-A., Gu, L. & Henry, R. W. Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. Mol. Cell. Biol. 24, 5989–5999 (2004).

    Article  CAS  Google Scholar 

  17. Scott, P. H. et al. Regulation of RNA polymerase III transcription during cell cycle entry. J. Biol. Chem. 276, 1005–1014 (2001).

    Article  CAS  Google Scholar 

  18. Morton, J. P., Kantidakis, T. & White, R. J. RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Res. 35, 3046–3052 (2007).

    Article  CAS  Google Scholar 

  19. Willis, I. M. & Moir, R. D. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem. Sci. 32, 51–53 (2007).

    Article  CAS  Google Scholar 

  20. Johnson, S. S., Zhang, C., Fromm, J., Willis, I. M. & Johnson, D. L. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol. Cell 26, 367–379 (2007).

    Article  CAS  Google Scholar 

  21. Stein, T., Crighton, D., Boyle, J. M., Varley, J. M. & White, R. J. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li–Fraumeni syndrome. Oncogene 21, 2961–2970 (2002).

    Article  CAS  Google Scholar 

  22. Wang, H.-D., Yuh, C.-H., Dang, C. V. & Johnson, D. L. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol. Cell. Biol. 15, 6720–6728 (1995).

    Article  CAS  Google Scholar 

  23. Felton-Edkins, Z. A. et al. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 22, 2422–2432 (2003).

    Article  CAS  Google Scholar 

  24. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  Google Scholar 

  25. Steiger, D., Furrer, M., Schwinkendorf, D. & Gallant, P. Max-independent functions of Myc in Drosophila melanogaster. Nature Genet. 40, 1084–1091 (2008).

    Article  CAS  Google Scholar 

  26. Kenneth, N. S. et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 14917–14922 (2007).

    Article  CAS  Google Scholar 

  27. Johnson, S. A. S., Dubeau, L. & Johnson, D. L. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J. Biol. Chem. 283, 19184–19191 (2008).

    Article  CAS  Google Scholar 

  28. Hoeffler, W. K. & Roeder, R. G. Enhancement of RNA polymerase III transcription by the E1A gene product of adenovirus. Cell 41, 955–963 (1985).

    Article  CAS  Google Scholar 

  29. Felton-Edkins, Z. A. & White, R. J. Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J. Biol. Chem. 277, 48182–48191 (2002).

    Article  CAS  Google Scholar 

  30. Felton-Edkins, Z. A. et al. Epstein–Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III. J. Biol. Chem. 281, 33871–33880 (2006).

    Article  CAS  Google Scholar 

  31. Johnson, S. A. S. et al. Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. Mol. Cell. Biol. 23, 3043–3051 (2003).

    Article  CAS  Google Scholar 

  32. Daly, N. L. et al. Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene 24, 880–888 (2005).

    Article  CAS  Google Scholar 

  33. Marshall, L., Kenneth, N. S. & White, R. J. Elevated tRNAiMet synthesis can drive cell proliferation and oncogenic transformation. Cell 133, 78–89 (2008).

    Article  CAS  Google Scholar 

  34. Kassavetis, G. A. & Geiduschek, E. P. Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem. Soc. Trans. 34, 1082–1087 (2006).

    Article  CAS  Google Scholar 

  35. Zetterberg, A. & Killander, D. Quantitative cytophotometric and autoradiographic studies on the rate of protein synthesis during interphase in mouse fibroblasts in vitro. Exp. Cell Res. 40, 1–11 (1965).

    Article  CAS  Google Scholar 

  36. Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G. & Sonenberg, N. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257, 1685–1689 (1992).

    Article  CAS  Google Scholar 

  37. Mamane, Y. et al. eIF4E — from translation to transformation. Oncogene 23, 3172–3179 (2004).

    Article  CAS  Google Scholar 

  38. Yee, N. S. et al. Mutation of RNA pol III subunit rpc2/polr3b leads to deficiency of subunit Rpc11 and disrupts zebrafish digestive development. PLOS Biol. 5, 2484–2492 (2007).

    Article  CAS  Google Scholar 

  39. Mann, C. et al. RPC53 encodes a subunit of Saccharomyces cerevisiae RNA polymerase C (III) whose inactivation leads to a predominantly G1 arrest. Mol. Cell. Biol. 12, 4314–4326 (1992).

    Article  CAS  Google Scholar 

  40. Ittmann, M., Ali, J., Greco, A. & Basilico, C. The gene complementing a temperature-sensitive cell cycle mutant of BHK cells is the human homologue of the yeast RPC53 gene, which encodes a subunit of RNA polymerase C (III). Cell Growth Diff. 4, 503–511 (1993).

    CAS  PubMed  Google Scholar 

  41. White, R. J. RNA polymerase III transcription — a battleground for tumour suppressors and oncogenes. Eur J. Cancer 40, 21–27 (2004).

    Article  CAS  Google Scholar 

  42. Tang, R.-B. et al. Increased level of Polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue. Mol. Carcinogen. 42, 93–96 (2005).

    Article  CAS  Google Scholar 

  43. Kohnoe, S., Maehara, Y. & Endo, H. A systemtatic survey of repetitive sequences abundantly expressed in rat tumors. Biochim. Biophys. Acta 909, 107–114 (1987).

    Article  CAS  Google Scholar 

  44. White, R. J., Stott, D. & Rigby, P. W. J. Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 59, 1081–1092 (1989).

    Article  CAS  Google Scholar 

  45. Chen, W., Heierhorst, J., Brosius, J. & Tiedge, H. Expression of neural BC1 RNA: induction in murine tumours. Eur. J. Cancer 33, 288–292 (1997).

    Article  CAS  Google Scholar 

  46. Arrand, J. R. & Rymo, L. Characterization of the major Epstein–Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol. 41, 376–389 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tugwood, J. D. et al. EBV-specific transcription in normal and malignant nasopharyngeal biopsies and in lymphocytes from healthy donors and infectious mononucleosis patients. J. Gen. Virol. 68, 1081–1091 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. White.

Supplementary information

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

doxycycline

OMIM

anauxetic dysplasia

FURTHER INFORMATION

Robert J. White's homepage

SUPPLEMENTARY INFORMATION

See online article

S1 (table)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, L., White, R. Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer 8, 911–914 (2008). https://doi.org/10.1038/nrc2539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing