Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Hypoxia, HIF1 and glucose metabolism in the solid tumour

Abstract

It has been known for many years that cellular metabolism within the solid tumour is markedly different from that of the corresponding normal tissue. The transcription factor hypoxia-inducible factor 1 (HIF1) has been implicated in regulating many of the genes that are responsible for the metabolic difference. However, it remains unclear how this 'aerobic glycolysis', originally described by Otto Warburg, offers tumour cells a growth advantage. As discussed in this Perspective, new data suggests that this metabolic switch may provide a benefit to the tumour not by increasing glycolysis but by decreasing mitochondrial activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of hypoxia-inducible factor 1α (HIF1α) stabilization.
Figure 2: Overview of hypoxia-inducible factor 1 α (HIF1α)-mediated regulation of tumour cell metabolism.
Figure 3: A hypothesis of how the Warburg effect gives tumour cells a growth advantage through reduced mitochondrial function.

Similar content being viewed by others

References

  1. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  2. Milosevic, M., Fyles, A., Hedley, D. & Hill, R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin. Radiat. Oncol. 14, 249–258 (2004).

    PubMed  Google Scholar 

  3. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  4. Dasu, A., Toma-Dasu, I. & Karlsson, M. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003).

    PubMed  Google Scholar 

  5. Denko, N. C. et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22, 5907–5914 (2003).

    CAS  PubMed  Google Scholar 

  6. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).

    CAS  PubMed  Google Scholar 

  7. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bardos, J. I. & Ashcroft, M. Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262–269 (2004).

    CAS  PubMed  Google Scholar 

  9. Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Rev. Cancer 5, 857–866 (2005).

    CAS  Google Scholar 

  10. Brahimi-Horn, M. C., Chiche, J. & Pouyssegur, J. Hypoxia signalling controls metabolic demand. Curr. Opin. Cell Biol. 19, 223–229 (2007).

    CAS  PubMed  Google Scholar 

  11. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  12. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006).

    CAS  PubMed  Google Scholar 

  13. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    CAS  PubMed  Google Scholar 

  14. Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 (1996).

    CAS  PubMed  Google Scholar 

  15. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu, C. J., Sataur, A., Wang, L., Chen, H. & Simon, M. C. The N-terminal transactivation domain confers target gene specificity of hypoxia inducible factors HIF-1α and HIF-2α. Mol. Biol. Cell (2007).

  17. Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ivan, M. et al. HIF α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  19. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  20. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  21. Jaakkola, P. et al. Targeting of HIFα to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  22. Stiehl, D. P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem. 281, 23482–23491 (2006).

    CAS  PubMed  Google Scholar 

  23. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  24. Stickle, N. H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell. Biol. 24, 3251–3261 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    CAS  PubMed  Google Scholar 

  26. Mazure, N. M., Chen, E. Y., Yeh, P., Laderoute, K. R. & Giaccia, A. J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996).

    CAS  PubMed  Google Scholar 

  27. Sheta, E. A., Trout, H., Gildea, J. J., Harding, M. A. & Theodorescu, D. Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene 20, 7624–7634 (2001).

    CAS  PubMed  Google Scholar 

  28. Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57, 5328–5335 (1997).

    CAS  PubMed  Google Scholar 

  29. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995–4004 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14, 391–396 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blancher, C., Moore, J. W., Robertson, N. & Harris, A. L. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61, 7349–7355 (2001).

    CAS  PubMed  Google Scholar 

  32. Chan, D. A., Sutphin, P. D., Denko, N. C. & Giaccia, A. J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem. 277, 40112–40117 (2002).

    CAS  PubMed  Google Scholar 

  33. Pore, N. et al. Akt1 activation can augment hypoxia-inducible factor-1α expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol. Cancer Res. 4, 471–479 (2006).

    CAS  PubMed  Google Scholar 

  34. Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005).

    CAS  PubMed  Google Scholar 

  35. MacKenzie, E. D. et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    CAS  PubMed  Google Scholar 

  37. Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell. Metab. 1, 409–414 (2005).

    CAS  PubMed  Google Scholar 

  39. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell. Metab. 1, 401–408 (2005).

    CAS  PubMed  Google Scholar 

  40. Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell. Metab. 1, 393–399 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    CAS  PubMed  Google Scholar 

  42. Vaux, E. C., Metzen, E., Yeates, K. M. & Ratcliffe, P. J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98, 296–302 (2001).

    CAS  PubMed  Google Scholar 

  43. Srinivas, V. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem. 276, 21995–21998 (2001).

    CAS  PubMed  Google Scholar 

  44. Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47 (2006).

    PubMed  PubMed Central  Google Scholar 

  45. Allen, J. W., Khetani, S. R., Johnson, R. S. & Bhatia, S. N. In vitro liver tissue model established from transgenic mice: role of HIF-1alpha on hypoxic gene expression. Tissue Eng. 12, 3135–3147 (2006).

    CAS  PubMed  Google Scholar 

  46. Vengellur, A., Woods, B. G., Ryan, H. E., Johnson, R. S. & LaPres, J. J. Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1α null mouse embryonic fibroblasts. Gene Expr. 11, 181–197 (2003).

    CAS  PubMed  Google Scholar 

  47. Lum, J. J. et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21, 1037–1049 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maxwell, P. H. et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 276, 9519–9525 (2001).

    CAS  PubMed  Google Scholar 

  50. Airley, R. E. & Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53, 233–256 (2007).

    CAS  PubMed  Google Scholar 

  51. Brown, G. K. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 23, 237–246 (2000).

    CAS  PubMed  Google Scholar 

  52. Ozbudak, I. H., Karaveli, S., Simsek, T., Erdogan, G. & Pestereli, E. Neoangiogenesis and expression of hypoxia-inducible factor 1α, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol. Oncol. 108, 603–608 (2008).

    CAS  PubMed  Google Scholar 

  53. Mathupala, S. P., Rempel, A. & Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 276, 43407–43412 (2001).

    CAS  PubMed  Google Scholar 

  54. Seagroves, T. N. et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. 21, 3436–3444 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Minchenko, A. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183–6187 (2002).

    CAS  PubMed  Google Scholar 

  56. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    CAS  PubMed  Google Scholar 

  57. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    CAS  PubMed  Google Scholar 

  58. Firth, J. D., Ebert, B. L. & Ratcliffe, P. J. Hypoxic regulation of lactate dehydrogenase, A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem. 270, 21021–21027 (1995).

    CAS  PubMed  Google Scholar 

  59. Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006).

    CAS  PubMed  Google Scholar 

  60. Baggetto, L. G. Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74, 959–974 (1992).

    CAS  PubMed  Google Scholar 

  61. Patel, M. S. & Korotchkina, L. G. Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp. Mol. Med. 33, 191–197 (2001).

    CAS  PubMed  Google Scholar 

  62. Roche, T. E. et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75 (2001).

    CAS  PubMed  Google Scholar 

  63. Corn, P. G. et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol. Ther. 4, 1285–1294 (2005).

    CAS  PubMed  Google Scholar 

  64. Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007).

    CAS  PubMed  Google Scholar 

  67. Allen, L. A., Zhao, X. J., Caughey, W. & Poyton, R. O. Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J. Biol. Chem. 270, 110–118 (1995).

    CAS  PubMed  Google Scholar 

  68. David, P. S. & Poyton, R. O. Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction. Biochim. Biophys. Acta 1709, 169–180 (2005).

    CAS  PubMed  Google Scholar 

  69. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  70. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    CAS  PubMed  Google Scholar 

  71. Collins, P., Jones, C., Choudhury, S., Damelin, L. & Hodgson, H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 25, 880–887 (2005).

    CAS  PubMed  Google Scholar 

  72. Muschel, R. J., Bernhard, E. J., Garza, L., McKenna, W. G. & Koch, C. J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res. 55, 995–998 (1995).

    CAS  PubMed  Google Scholar 

  73. Yoshida, T., Maulik, N., Engelman, R. M., Ho, Y. S. & Das, D. K. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ. Res. 86, 264–269 (2000).

    CAS  PubMed  Google Scholar 

  74. Siraki, A. G., Pourahmad, J., Chan, T. S., Khan, S. & O'Brien, P. J. Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32, 2–10 (2002).

    CAS  PubMed  Google Scholar 

  75. Li, C., Wright, M. M. & Jackson, R. M. Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp. Lung Res. 28, 373–389 (2002).

    PubMed  Google Scholar 

  76. Tuttle, S. W. et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1α stabilization under moderate hypoxia. J. Biol. Chem. 282, 36790–36796 (2007).

    CAS  PubMed  Google Scholar 

  77. Chandel, N. S. & Schumacker, P. T. Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 88, 1880–1889 (2000).

    CAS  PubMed  Google Scholar 

  78. Papandreou, I. et al. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res. 65, 3171–3178 (2005).

    CAS  PubMed  Google Scholar 

  79. Brunelle, J. K. et al. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J. Biol. Chem. 279, 4305–4312 (2004).

    CAS  PubMed  Google Scholar 

  80. Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Buzzai, M. et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 4165–4173 (2005).

    CAS  PubMed  Google Scholar 

  82. Ramanathan, A., Wang, C. & Schreiber, S. L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl Acad. Sci. USA 102, 5992–5997 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

    CAS  PubMed  Google Scholar 

  84. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wilson, D. F. & Erecinska, M. The oxygen dependence of cellular energy metabolism. Adv. Exp. Med. Biol. 194, 229–239 (1986).

    CAS  PubMed  Google Scholar 

  86. Chandel, N., Budinger, G. R., Kemp, R. A. & Schumacker, P. T. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am. J. Physiol. 268, L918–L925 (1995).

    CAS  PubMed  Google Scholar 

  87. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Secomb, T. W., Hsu, R., Ong, E. T., Gross, J. F. & Dewhirst, M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316 (1995).

    CAS  PubMed  Google Scholar 

  89. Evans, S. M., Hahn, S. M., Magarelli, D. P. & Koch, C. J. Hypoxic heterogeneity in human tumors: EF5 binding, vasculature, necrosis, and proliferation. Am. J. Clin. Oncol. 24, 467–472 (2001).

    CAS  PubMed  Google Scholar 

  90. Shen, J. et al. Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants. Biophys. J. 84, 1291–1298 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003).

    CAS  PubMed  Google Scholar 

  92. Tu, B. P. & Weissman, J. S. The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10, 983–994 (2002).

    CAS  PubMed  Google Scholar 

  93. Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).

    CAS  PubMed  Google Scholar 

  94. Herst, P. M. & Berridge, M. V. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim. Biophys. Acta 1767, 170–177 (2007).

    CAS  PubMed  Google Scholar 

  95. Rosenfeld, E., Beauvoit, B., Rigoulet, M. & Salmon, J. M. Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast 19, 1299–1321 (2002).

    CAS  PubMed  Google Scholar 

  96. Akakura, N. et al. Constitutive expression of hypoxia-inducible factor-1α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 61, 6548–6554 (2001).

    CAS  PubMed  Google Scholar 

  97. Chen, J. et al. Dominant-negative hypoxia-inducible factor-1α reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol. 162, 1283–1291 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, W. et al. Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol. Cancer Ther. 6, 2554–2562 (2007).

    CAS  PubMed  Google Scholar 

  99. Di Cosimo, S. et al. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc.) 39, 157–174 (2003).

    CAS  Google Scholar 

  100. Tannock, I. F., Guttman, P. & Rauth, A. M. Failure of 2-deoxy-D-glucose and 5-thio-D-glucose to kill hypoxic cells of two murine tumors. Cancer Res. 43, 980–983 (1983).

    CAS  PubMed  Google Scholar 

  101. Maher, J. C., Savaraj, N., Priebe, W., Liu, H. & Lampidis, T. J. Differential sensitivity to 2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30, e34–39 (2005).

    PubMed  Google Scholar 

  102. Liu, H., Savaraj, N., Priebe, W. & Lampidis, T. J. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem. Pharmacol. 64, 1745–1751 (2002).

    CAS  PubMed  Google Scholar 

  103. Singh, D. et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol. 181, 507–514 (2005).

    PubMed  Google Scholar 

  104. Maschek, G. et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64, 31–34 (2004).

    CAS  PubMed  Google Scholar 

  105. Jha, B. & Pohlit, W. Reversibility of inhibition of DNA double strand break repair by 2-deoxy-D-glucose in Ehrlich ascites tumour cells. Int. J. Radiat. Biol. 63, 459–467 (1993).

    CAS  PubMed  Google Scholar 

  106. Varshney, R., Dwarakanath, B. & Jain, V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int. J. Radiat. Biol. 81, 397–408 (2005).

    CAS  PubMed  Google Scholar 

  107. Fulda, S. & Debatin, K. M. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 6, 790–792 (2007).

    CAS  PubMed  Google Scholar 

  108. Tanaka, T., Kurose, A., Halicka, H. D., Traganos, F. & Darzynkiewicz, Z. 2-deoxy-D-glucose reduces the level of constitutive activation of ATM and phosphorylation of histone H2AX. Cell Cycle 5, 878–82 (2006).

    CAS  PubMed  Google Scholar 

  109. Kurtoglu, M. et al. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol. Cancer Ther. 6, 3049–3058 (2007).

    CAS  PubMed  Google Scholar 

  110. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  111. Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nature Rev. Drug Discov. 2, 803–811 (2003).

    CAS  Google Scholar 

  112. Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26, 341–352 (2007).

    CAS  PubMed  Google Scholar 

  113. Cairns, R. A., Papandreou, I., Sutphin, P. D. & Denko, N. C. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl Acad. Sci. USA 104, 9445–9450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Beck, R. et al. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J. Nucl. Med. 48, 973–80 (2007).

    CAS  PubMed  Google Scholar 

  115. Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–104 (2006).

    PubMed  Google Scholar 

  116. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    CAS  PubMed  Google Scholar 

  117. McFate, T. et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 9 Jun 2008 (doi:10.1074/jbc.M801765200).

    CAS  Google Scholar 

  118. Bonnet, S. et al. A mitochondria–K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    CAS  PubMed  Google Scholar 

  119. Gleadle, J. M. & Ratcliffe, P. J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 89, 503–509 (1997).

    CAS  PubMed  Google Scholar 

  120. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    CAS  PubMed  Google Scholar 

  121. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    CAS  PubMed  Google Scholar 

  122. Minchenko, O., Opentanova, I. & Caro, J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1–4) expression in vivo. FEBS Lett. 554, 264–270 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute

glioblastoma

pheochromocytoma

prostate cancer

renal cancer

National Cancer Institute Drug Dictionary

doxorubicin

echinomycin

paclitaxel

tirapazamine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denko, N. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705–713 (2008). https://doi.org/10.1038/nrc2468

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing