Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Heavy ion carcinogenesis and human space exploration

Abstract

Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Space radiation environment and shielding.
Figure 2: Uncertainties in space and terrestrial radiation exposures.
Figure 3: Chromosomal aberrations induced by heavy ions.

References

  1. Cucinotta, F. A. & Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. National Council on Radiation Protection and Measurements. Information needed to make radiation protection recommendations for space missions beyond low-earth orbit. NCRP Report No. 153 (National Council on Radiation Protection and Measurements, Bethesda, 2006).

  3. European Space Agency: HUMEX Study in the survivability and adaptation of humans to long-duration exploratory missions. ESA-ESTEC SP-1264, (Nordwijk, the Netherlands, 2003).

  4. White, R. J. & Averner, M. Humans in space. Nature 409, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Longnecker, D. & Molins, R. (eds). A Risk Reduction Strategy For Human Exploration Of Space: A Review of NASA's Bioastronautics Roadmap. (National Academies, Washington DC 2005).

    Google Scholar 

  6. National Council on Radiation Protection and Measurements: Acceptability of Risk from Radiation: Application to Human Space Flight. NCRP Symp. Proc. No. 3 (National Council on Radiaton, Bethesda, 1997).

  7. Preston, D. L. et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997 Radiat. Res. 160, 381–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Cucinotta, F. A. et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Cucinotta, F. A., Kim, M. H. & Ren, L. Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat. Meas. 41, 1173–1185 (2006).

    Article  CAS  Google Scholar 

  10. Krämer, M. & Kraft, G. Calculations of heavy ion track structure. Radiat. Environ. Biophys. 33, 91–109 (1994).

    Article  PubMed  Google Scholar 

  11. Cucinotta, F. A., Nikjoo, H. & Goodhead, D. T. Model of the radial distribution of energy imparted in nanometer volumes from HZE particles. Radiat. Res. 153, 459–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Goodhead, D. T. Initial events in the cellular effects of ionising radiation: clustered damage in DNA. Int. J. Radiat. Biol. 65, 7–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Ponomarev, A. & Cucinotta, F. A. Chromatin loops are responsible for higher counts of small DNA fragments induced by high-LET radiation, while chromosomal domains do not affect the fragment sizes. Int. J. Radiat. Biol. 82, 293–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Prise, K. M. et al. A review of dsb induction data for varying quality radiations. Int. J. Radiat. Biol. 74, 173–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sutherland, B. M., Bennett, P. V., Sidorkina, O. & Laval, J. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc. Natl Acad. Sci. USA 97, 103–108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rydberg, B. et al. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: experimental and theoretical study for high- and low-LET radiation. Radiat. Res. 163, 526–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Leatherbarrow, E. L. et al. Induction and quantification of γ-H2AX foci following low and high LET-irradiation. Int. J. Radiat. Biol. 82, 111–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Fakir, H. et al. Clusters of DNA double-strand breaks induced by different doses of nitrogen ions for various LETs: experimental measurements and theoretical analyses. Radiat. Res. 166, 917–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hada, M. & Sutherland, B. M. Spectrum of complex DNA damages depends on the incident radiation. Radiat. Res. 165, 223–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Phillips, E. R. & McKinnnon, P. J. DNA double-strand break repair and development. Oncogene 26, 7799–7808 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Löbrich, M. & Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nature Rev. Cancer 7, 861–869 (2007).

    Article  CAS  Google Scholar 

  22. Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 40, 363–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. O'Driscoll, M. & Jeggo, P. A. The role of double-strand break repair — insights from human genetics. Nature Rev. Genet. 7, 45–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Costes, S. V. et al. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat. Res. 165, 505–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Desai, N. et al. Immunofluorescent detection of DNA double strand breaks induced by high-LET radiation. Radiat. Res. 164, 518–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. et al. Artemis phosphorylation and function in response to damage. DNA Repair 4, 556–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pluth, J. M. et al. DNA double strand break repair and chromosomal rejoining defects with misrejoining in Nijmegen breakage syndrome cells. DNA Repair 7, 108–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Falck, J, Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR, and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Mari, P. O. et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl Acad. Sci. USA 103, 18597–18602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams, E. S. et al. DNA double-strand breaks are not sufficient to initiate recruitment of TRF2. Nature Genet. 39, 696–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Uematsu, N. et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J. Cell Biol. 217, 219–229 (2007).

    Article  CAS  Google Scholar 

  33. Jakob, B. et al. Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Radiat. Res. 163, 681–90 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Costes, S. V. et al. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLOS Comp. Biol. 3, 1477–1488 (2007).

    Article  CAS  Google Scholar 

  35. Ding, L. et al. Gene expression changes in normal human skin fibroblasts induced by HZE-particle irradiation. Radiat. Res. 164, 523–526 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kruhlak, M. J., Celeste, A. & Nussenzweig, A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 5, 1910–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol. 9, 675–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Cornforth, M. N. Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair 5, 1182–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. George, K. et al. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat. Res. 160, 425–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Tucker, J. D., Marples, B., Ramsey, M. J. & Lutze-Mann, L. H. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions. Radiat. Res. 161, 648–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Rithidech, K.N., Honikel, L. & Whorton, E. B. mFISH analysis of chromosomal damage in bone marrow cells collected from CBA/CaJ mice following whole body exposure to 56Fe ions. Radiat. Environ. Biophys. 46, 137–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Durante, M., George, K., Wu, H. & Cucinotta, F. A., Karyotypes of human lymphocytes exposed to high-energy iron ions. Radiat. Res. 158, 581–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Johannes, C. et al. Chromosome intrachanges and interchanges detected by multicolor banding in lymphocytes: searching for clastogen signatures in the human genome. Radiat. Res. 161, 540–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hada, M., Cucinotta, F. A., Gonda, S. R. & Wu, H. mBAND analysis of chromosomal aberrations in human epithelial cells exposed to low- and high-LET radiation. Radiat. Res. 168, 98–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Durante, M., George, K. & Cucinotta, F. A. Chromosomes lacking telomeres are present in the progeny of human lymphocytes exposed to heavy ions. Radiat. Res. 165, 51–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Durante, M., Biomarkers of space radiation risk. Radiat. Res. 164, 467–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Norppa, H. et al. Chromosomal aberrations an SCE as biomarkers of cancer risk. Mutat. Res. 600, 37–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Boffetta, P. et al. Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. Am. J. Epidemiol. 165, 36–43 (2007).

    Article  PubMed  Google Scholar 

  49. International Atomic Energy Agency. Cytogenetic analysis for radiation dose assessment. IAEA Technical report no. 405. (IAEA, Vienna, 2001).

  50. George, K. et al. Chromosome aberrations in the blood lymphocytes of astronauts after space flight. Radiat. Res. 156, 731–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. George, K., Willingham, H. & Cucinotta, F. A. Stability of chromosome aberrations in the blood lymphocytes of astronauts measured after space flight by FISH chromosome painting. Radiat. Res. 164, 474–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Durante, M. et al. Chromosome aberration dosimetry in cosmonauts after single or multiple space flights. Cytogenet. Genome Res. 103, 40–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Fry, R. J. M. & Storer, J. B. External radiation carcinogenesis. Adv Radiat. Biol. 13, 31–91 (1987).

    Article  Google Scholar 

  54. Alpen, E. L., Powers-Risius, P., Curtis, S. B. & DeGuzman, R. Tumorigenic potential of high-Z, high-LET charged-particle radiations. Radiat. Res. 136, 382–391 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Dicello, J. F. et al. In vivo mammary tumorigenesis in the Sprague–Dawley rat and microdosimetric correlates. Phys. Med. Biol. 49, 3817–3830 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Ando, K. et al. Tumor induction in mice locally irradiated with carbon ions: a retrospective analysis. J. Radiat. Res. 46, 185–190 (2005).

    Article  PubMed  Google Scholar 

  57. Kadhim, M. A. et al. Transmission of chromosomal instability after plutonium α particle irradiation. Nature 355, 738–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Sabatier, L., Dutrillaux, B. & Martin, M. Chromosomal instability. Nature 357, 548 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Sieber, O. M., Heinimann, K. & Tomlison, I. P. Genomic instability — the engine of tumorigenesis? Nature Rev. Cancer 3, 701–708 (2003).

    Article  CAS  Google Scholar 

  60. Huang, L., Snyder, A. R. & Morgan, W. F. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22, 5848–5854 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Kadhim, M. A., Hill, M. A. & Moore, S. R. Genomic instability and the role of radiation quality. Radiat. Prot. Dosim. 122, 221–227 (2006).

    Article  CAS  Google Scholar 

  62. Park, C. C. et al. Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc. Natl Acad. Sci. USA 100, 10728–10733 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kusunoki, T. & Hayashi, T. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int. J. Radiat. Biol. 31, 1–14 (2007).

    Google Scholar 

  64. Rola, R. et al. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis. Radiat. Res. 164, 556–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Mothersill, C. & Seymour, B. Radiation-induced bystander effects--implications for cancer. Nature Rev. Cancer. 4, 158–164 (2004).

    Article  CAS  Google Scholar 

  66. Sokolov, M. V., Dickey, J. S., Bonner, W. M. & Sedelnikova, O. A. γ-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle 6, 2210–2222 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Barcellos-Hoff, M. H, Park, C. & Wright, E. G. Radiation and the microenvironment-tumorigenesis and therapy. Nature Rev. Cancer 5, 867–75 (2005).

    Article  CAS  Google Scholar 

  68. Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cardis, E. et al. The 15-country collaborative study of cancer risks among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res. 167, 396–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Sato, M. et al. Multiple oncogenic changes (K-RASv12, p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res. 66, 2116–2128 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. National Council on Radiation Protection and Measurements. Extrapolation of radiation-induced cancer risks from nonhuman experimental systems to humans. NCRP Report No. 150 (National Council on Radiation Protection and Measurements, Bethesda, 2006).

  72. Berie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006).

    Article  CAS  Google Scholar 

  73. Kirshner, J. et al. Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res. 66, 10861–10869 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Andarawewa, K. L. et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β-induced epithelial to mesenchymal transition. Cancer Res. 67, 8662–8670 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Weiss, J. F. & Landauer, M. R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189, 1–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Sasse, A. D., Clark, L. G., Sasse, E. C. & Clark, O. A. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 64, 784–791 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Boccia, R. Improved tolerability of amifostine with rapid infusion and optimal patient preparation. Semin. Oncol. 29, S9–S13 (2002).

    Article  CAS  Google Scholar 

  78. Halliwell, B. The antioxidant paradox. Lancet 375, 1179–1180 (2000).

    Article  Google Scholar 

  79. Bingham, S. & Riboli, E. Diet and cancer — the European Prospective Investigation into Cancer and Nutrition. Nature Rev. Cancer 4, 206–215 (2004).

    Article  CAS  Google Scholar 

  80. Sauvaget, C., Kasagi, F. & Waldren, C. A. Dietary factors and cancer mortality among atomic-bomb survivors. Mutat. Res. 551, 145–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Weiss, J. F. & Landauer, M. N. Radioprotection by antioxidants. Ann. NY Acad. Sci. 899, 44–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, S. M. et al. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Waldren, C. A., Vannais, D. B. & Ueno, A. M. A role for long-lived radicals (LLR) in radiation-induced mutation and persistent chromosomal instability: counteraction by ascorbate and RibCys but not DMSO. Mutat. Res. 551, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Burns, F. J. et al. Induction and prevention of carcinogenesis in rat skin exposed to space radiation. Radiat. Environ. Biophys. 46, 195–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Guan, J. et al. Effects of dietary supplements on the space radiation-induced reduction in total antioxidant status in CBA mice. Radiat. Res. 165, 373–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kennedy, A. R., Guan, J. & Ware, J. H. Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys. 46, 201–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Rabin, B. M., Joseph, J. A. & Shukitt-Hale, B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 1036, 122–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bjelakovic, G. et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842–857 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kovalchuk, O. et al. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat. Res. 548, 75–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kyoizumi, S. et al. Individual variation of somatic gene mutability in relation to cancer susceptibility: prospective study of erythrocyte glycophorin gene mutations of Atomic bomb survivors. Cancer Res. 65, 5462–5469 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ponder, A. J. Cancer Genetics. Nature 411, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Thompson, D. et al. Cancer risks and mortality in heterozygous ATM mutations carriers. J. Natl Cancer Inst. 97, 813–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Smilenov, L. B., Brenner, D. J. & Hall, E. J. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells. Cancer Res. 61, 5710–5713 (2001).

    CAS  PubMed  Google Scholar 

  94. Worgul, B. V. et al. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc. Natl Acad. Sci. USA. 99, 9836–9839 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kleinman, N. J. et al. Mrad9 and ATM haploinsufficiency enhance spontaneous and X-ray-induced cataractogenesis in mice. Radiat. Res. 168, 567–573 (2007).

    Article  Google Scholar 

  96. Baeyens, A. et al. Chromosomal radiosensitivity in BRCA1 and BRCA2 mutation carriers. Int. J. Radiat. Biol. 80, 745–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kato, T. A. et al. A defect in DNA double strand break processing in cells from unaffected parents of retinoblastoma patients and other apparently normal humans. DNA Repair 8, 818–829 (2007).

    Article  CAS  Google Scholar 

  98. Flint-Richter, P. & Sadetzki, S. Genetic predisposition for the development of radiation-associated meningioma: an epidemiological study. Lancet Oncol. 8, 403–410 (2007).

    Article  PubMed  Google Scholar 

  99. Hall, E. J. Cancer caused by x-rays — a random event? Lancet Oncol. 8, 369–370 (2007).

    Article  PubMed  Google Scholar 

  100. Hall, E. J. et al. The relative biological effectiveness of densely ionizing heavy-ion radiation for inducing ocular cataracts in wild type versus mice heterozygous for the ATM gene. Radiat. Environ. Biophys. 45, 99–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Wilson, J. W. et al. Issues in protection from galactic cosmic rays. Radiat. Environ. Biophys. 34, 217–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Simonsen, L. C., Wilson, J. W., Kim, M. H. & Cucinotta, F. A. Radiation exposure for human Mars exploration. Health Phys. 79, 515–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Agostinelli, S. et al. Geant4: a simulation toolkit. Nucl. Instr. Meth. A506, 250–303 (2003).

    Article  CAS  Google Scholar 

  104. Miller, J. et al. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the International Space Station. Radiat. Res. 159, 381–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Durante, M. et al. Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material. Radiat. Res. 164, 571–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Lobascio, C. et al. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures. Health Phys. 94, 242–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Vana, N. et al. Novel shielding materials for space and air travel. Radiat. Prot. Dosim. 120, 405–409 (2006).

    Article  CAS  Google Scholar 

  108. Parker, E. N. Shielding space travelers. Sci. Am. 294, 40–47 (2006).

    Article  PubMed  Google Scholar 

  109. Spillantini, P. et al. Shielding from cosmic radiation for interplanetary missions: active and passive methods. Radiat. Meas. 42, 14–23 (2007).

    Article  CAS  Google Scholar 

  110. Kiefer, J. & Pross, H. D. Space radiation effects and microgravity. Mutat. Res. 430, 299–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Durante, M. & Kronenberg, A. Ground-based research with heavy ions for space radiation protection. Adv. Space Res. 35, 180–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Schimmerling, W., Cucinotta, F. A. & Wilson, J. W. Radiation risk and human space exploration. Adv. Space Res. 31, 27–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Durante, M. et al. Preparatory study of a ground-based space radiobiology program in Europe. Adv. Space Res. 32, 1082–1086 (2007).

    Article  Google Scholar 

  114. Amaldi, U. & Kraft, G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005).

    Article  CAS  Google Scholar 

  115. Schulz-Ertner, D. & Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 25, 953–964 (2007).

    Article  PubMed  Google Scholar 

  116. Hall, E. J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1–7 (2006).

    Article  PubMed  Google Scholar 

  117. Allan, J. M. & Travis, L. B. Mechanisms of therapy-related carcinogenesis. Nature Rev. Cancer 5, 943–955 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Durante, M. Heavy ion radiobiology for hadrontherapy and space radiation protection. Radiother. Oncol. 73, S158–S160 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NASA Space Radiation Program, the Italian Space Agency (ASI) MoMa-COUNT and the US Department of Energy Low Dose Program for support of the research performed by the authors. W. Schimmerling should receive the gratitude of the whole space radiobiology community for initiating and promoting the NASA Space Radiation Health Program. We also acknowledge the commitment of ESA to initiate a European ground-based space radiobiology programme (IBER), and the great efforts and enthusiasm of O. Angerer at ESTEC for this project.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute:

ataxia telangiectasia

lung cancer

meningioma

retinoblastoma

National Cancer Institute Drug Dictionary:

amifostine

FURTHER INFORMATION

M. Durante's homepage

F. A. Cucinotta's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durante, M., Cucinotta, F. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 8, 465–472 (2008). https://doi.org/10.1038/nrc2391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing