Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cell-to-cell fusion as a link between viruses and cancer

Abstract

The ability to fuse cells is shared by many viruses, including common human pathogens and several endogenous viruses. Here we will discuss how cell fusion can link viruses to cancer, what types of cancers it can affect, how the existence of this link can be tested and how the hypotheses that we propose might affect the search for human oncogenic viruses. In particular, we will focus on the ability of cell fusion that is caused by viruses to induce chromosomal instability, a common affliction of cancer cells that has been thought to underlie the malignant properties of cancerous tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viruses fuse cells by two mechanisms.
Figure 2: How cell fusion caused by viruses might relate to cancer initiation or progression — several conjectures.
Figure 3: How can one distinguish binuclear cells made by fusion rather than by failed cytokinesis?
Figure 4: How does cell fusion cause chromosomal instability?

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2007. CA Cancer J. Clin. 57, 43–66 (2007).

    Article  PubMed  Google Scholar 

  2. Doll, R. & Boreham, J. Recent trends in cancer mortality in the UK. Br. J. Cancer 92, 1329–1335 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Susser, M. & Stein, Z. Civilisation and peptic ulcer. Lancet 1, 115–119 (1962).

    CAS  PubMed  Google Scholar 

  4. Kidd, M. & Modlin, I. M. A century of Helicobacter pylori: paradigms lost—paradigms regained. Digestion 59, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. zur Hausen, H. Infections Causing Human Cancer (Wiley-VCH, Weinheim, 2006).

    Book  Google Scholar 

  7. Roden, R. & Wu, T. C. How will HPV vaccines affect cervical cancer? Nature Rev. Cancer 6, 753–763 (2006).

    Article  CAS  Google Scholar 

  8. Chien, Y. C., Jan, C. F., Kuo, H. S. & Chen, C. J. Nationwide hepatitis B vaccination program in Taiwan: effectiveness in the 20 years after it was launched. Epidemiol. Rev. 28, 126–135 (2006).

    Article  PubMed  Google Scholar 

  9. Beasley, R. P. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. zur Hausen, H. Viruses in human tumors—personal reflections. Behring Inst. Mitt. 91, 21–27 (1992).

    Google Scholar 

  11. Evans, A. S. & Mueller, N. E. Viruses and cancer. Causal associations. Ann. Epidemiol. 1, 71–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Duelli, D. M., Hearn, S., Myers, M. P. & Lazebnik, Y. A primate virus generates transformed human cells by fusion. J. Cell Biol. 171, 493–503 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parris, G. E. The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones. Med. Hypotheses 64, 1011–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nature Rev. Microbiol. 2, 109–122 (2004).

    Article  CAS  Google Scholar 

  16. Chen, E. H. & Olson, E. N. Unveiling the mechanisms of cell–cell fusion. Science 308, 369–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Shmulevitz, M. & Duncan, R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J. 19, 902–912 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, T. C. & Kirn, D. Systemic efficacy with oncolytic virus therapeutics: clinical proof-of-concept and future directions. Cancer Res. 67, 429–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ogle, B. M., Cascalho, M. & Platt, J. L. Biological implications of cell fusion. Nature Rev. Mol. Cell Biol. 6, 567–575 (2005).

    Article  CAS  Google Scholar 

  20. Chen, E. H., Grote, E., Mohler, W. & Vignery, A. Cell–cell fusion. FEBS Lett. 581, 2181–2193 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Duelli, D. & Lazebnik, Y. Cell fusion: a hidden enemy? Cancer Cell 3, 445–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Ringertz, N. R. & Savage, R. E. Cell Hybrids (Academic Press, New York, 1976).

    Google Scholar 

  23. Ogle, B. M. et al. Spontaneous fusion of cells between species yields transdifferentiation and retroviral transfer in vivo. FASEB J. 18, 548–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Larizza, L. & Schirrmacher, V. Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants. Cancer Metastasis Rev. 3, 193–222 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. (2007).

  26. Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989).

    CAS  PubMed  Google Scholar 

  27. Margolis, R. L. Tetraploidy and tumor development. Cancer Cell 8, 353–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Boveri, T. The Origin of Malignant Tumors (The Williams & Wilkins Company, Baltimore, 1929).

    Google Scholar 

  29. Duesberg, P., Li, R., Fabarius, A. & Hehlmann, R. The chromosomal basis of cancer. Cell Oncol. 27, 293–318 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  32. Steinbeck, R. G., Heselmeyer, K. M. & Auer, G. U. DNA ploidy in human colorectal adenomas. Anal. Quant. Cytol. Histol 16, 196–202 (1994).

    CAS  PubMed  Google Scholar 

  33. Kronenwett, U., Huwendiek, S., Castro, J., Ried, T. & Auer, G. Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br. J. Cancer 92, 389–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, C., Zhang, X., Huang, Q., Klein, M. & Goyal, R. K. High-fidelity DNA histograms in neoplastic progression in Barrett's esophagus. Lab. Invest. 87, 466–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Matzke, M. A., Mette, M. F., Kanno, T. & Matzke, A. J. Does the intrinsic instability of aneuploid genomes have a causal role in cancer? Trends Genet. 19, 253–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. FitzPatrick, D. R. Transcriptional consequences of autosomal trisomy: primary gene dosage with complex downstream effects. Trends Genet. 21, 249–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Munzarova, M. & Kovarik, J. Is cancer a macrophage-mediated autoaggressive disease? Lancet 1, 952–954 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Vignery, A. Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol. 15, 188–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Pawelek, J. M. Tumour cell hybridization and metastasis revisited. Melanoma Res. 10, 507–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Lagarde, A. E. & Kerbel, R. S. Somatic cell hybridization in vivo and in vitro in relation to the metastatic phenotype. Biochim. Biophys. Acta 823, 81–110 (1985).

    CAS  PubMed  Google Scholar 

  41. Jacobsen, B. M. et al. Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res. 66, 8274–8279 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rodic, N., Rutenberg, M. S. & Terada, N. Cell fusion and reprogramming: resolving our transdifferences. Trends Mol. Med. 10, 93–96 (2004).

    Article  PubMed  Google Scholar 

  43. Tada, T. Nuclear reprogramming: an overview. Methods Mol. Biol. 348, 227–236 (2006).

    PubMed  Google Scholar 

  44. Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J. & Terzis, A. J. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Rev. Cancer 5, 899–904 (2005).

    Article  CAS  Google Scholar 

  45. Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Marx, J. Medicine. Bone marrow cells: the source of gastric cancer? Science 306, 1455–1457 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Andersen, T. et al. Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J. Pathol. 211, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wiener, F., Fenyo, E. M. & Klein, G. Tumor-host cell hybrids in radiochimeras. Proc. Natl Acad. Sci. USA 71, 148–152 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mortensen, K., Lichtenberg, J., Thomsen, P. D. & Larsson, L. I. Spontaneous fusion between cancer cells and endothelial cells. Cell. Mol. Life Sci. 61, 2125–2131 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Goldenberg, D. M., Pavia, R. A. & Tsao, M. C. In vivo hybridisation of human tumour and normal hamster cells. Nature 250, 649–651. (1974).

    Article  CAS  PubMed  Google Scholar 

  51. Kikyo, N. & Wolffe, A. P. Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons. J. Cell Sci. 113, 11–20. (2000).

    CAS  PubMed  Google Scholar 

  52. Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, F., Pomerantz, J. H., Sen, G., Palermo, A. T. & Blau, H. M. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA 104, 4395–4400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sullivan, S. & Eggan, K. The potential of cell fusion for human therapy. Stem Cell Rev. 2, 341–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Bergsmedh, A. et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc. Natl Acad. Sci. USA 98, 6407–6411 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bergsmedh, A., Szeles, A., Spetz, A. L. & Holmgren, L. Loss of the p21(Cip1/Waf1) cyclin kinase inhibitor results in propagation of horizontally transferred DNA. Cancer Res. 62, 575–579 (2002).

    CAS  PubMed  Google Scholar 

  57. Duelli, D. M. et al. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr. Biol. 17, 431–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Heselmeyer, K. et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl Acad. Sci. USA 93, 479–484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heselmeyer, K. et al. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer 19, 233–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kronenwett, U. et al. Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res. 64, 904–909 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Steinbeck, R. G., Heselmeyer, K. M., Neugebauer, W. F., Falkmer, U. G. & Auer, G. U. DNA ploidy in human colorectal adenocarcinomas. Anal. Quant. Cytol. Histol 15, 187–194 (1993).

    CAS  PubMed  Google Scholar 

  62. Weger, A. R. et al. Nuclear DNA distribution pattern of the parenchymal cells in adenocarcinomas of the pancreas and in chronic pancreatitis. A study of archival specimens using both image and flow cytometry. Gastroenterology 99, 237–242 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Takeuchi, M. et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev. Biol. Anim. 43, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Duensing, S. & Munger, K. Centrosomes, genomic instability, and cervical carcinogenesis. Crit. Rev. Eukaryot. Gene Expr. 13, 9–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Tysnes, B. B. & Bjerkvig, R. Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim. Biophys. Acta 1775, 283–297 (2007).

    CAS  PubMed  Google Scholar 

  66. White, J. & Dalton, S. Cell cycle control of embryonic stem cells. Stem Cell Rev. 1, 131–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Alvarez-Dolado, M. Cell fusion: biological perspectives and potential for regenerative medicine. Front. Biosci. 12, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Elgui de Oliveira, D. DNA viruses in human cancer: an integrated overview on fundamental mechanisms of viral carcinogenesis. Cancer Lett. 247, 182–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Pagano, J. S. et al. Infectious agents and cancer: criteria for a causal relation. Semin. Cancer Biol. 14, 453–471 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mant, C., Hodgson, S., Hobday, R., D'Arrigo, C. & Cason, J. A viral aetiology for breast cancer: time to re-examine the postulate. Intervirology 47, 2–13 (2004).

    Article  PubMed  Google Scholar 

  72. Wiernik, P. H. & Etkind, P. R. Is mouse mammary tumor virus an etiologic agent of human breast cancer and lymphoma? South. Med. J. 99, 108–110 (2006).

    Article  PubMed  Google Scholar 

  73. Rakowicz-Szulczynska, E. M., McIntosh, D. G. & Smith, M. L. Giant syncytia and virus-like particles in ovarian carcinoma cells isolated from ascites fluid. Clin. Diagn Lab. Immunol. 6, 115–126 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Johnson, R. T. & Rao, P. N. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature 226, 717–722 (1970).

    Article  CAS  PubMed  Google Scholar 

  75. Kovacs, G. Premature chromosome condensation: evidence for in vivo cell fusion in human malignant tumours. Int. J. Cancer 36, 637–641 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Williams, D. M., Scott, C. D. & Beck, T. M. Premature chromosome condensation in human leukemia. Blood 47, 687–693 (1976).

    CAS  PubMed  Google Scholar 

  77. Petkovic, I. et al. Premature chromosome condensation in children with acute lymphocytic leukemia (L1) and malignant histiocytosis. Cancer Genet. Cytogenet. 35, 37–40 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Miles, C. P. & Wolinska, W. A comparative analysis of chromosomes and diagnostic cytology in effusions from 58 cancer patients. Cancer 32, 1458–1469 (1973).

    Article  CAS  PubMed  Google Scholar 

  79. Reichmann, A. & Levin, B. Premature chromosome condensation in human large bowel cancer. Cancer Genet. Cytogenet. 3, 221–225 (1981).

    Article  CAS  PubMed  Google Scholar 

  80. Atkin, N. B. Premature chromosome condensation in carcinoma of the bladder: presumptive evidence for fusion of normal and malignant cells. Cytogenet. Cell Genet. 23, 217–219 (1979).

    Article  CAS  PubMed  Google Scholar 

  81. Sreekantaiah, C., Bhargava, M. K. & Shetty, N. J. Premature chromosome condensation in human cervical carcinoma. Cancer Genet. Cytogenet. 24, 263–269 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Casalone, R., Meriggi, F., Forni, E. & Pasquali, F. Cytogenetic findings in a case of anaplastic carcinoma of the pancreas. Cancer Genet. Cytogenet. 29, 253–259 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Sandberg, A. A. Some comments regarding chromosome pulverization (premature chromosome condensation or PCC, prophasing). Virchows Arch. B Cell Pathol. 29, 15–18 (1978).

    CAS  PubMed  Google Scholar 

  84. Deckard-Janatpour, K. et al. Tumors of the pancreas with osteoclast-like and pleomorphic giant cells: an immunohistochemical and ploidy study. Arch. Pathol. Lab. Med. 122, 266–272 (1998).

    CAS  PubMed  Google Scholar 

  85. Sakai, Y. et al. Origin of giant cells in osteoclast-like giant cell tumors of the pancreas. Hum Pathol. 31, 1223–1229 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Moyes, D., Griffiths, D. J. & Venables, P. J. Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet. 23, 326–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Dewannieux, M., Blaise, S. & Heidmann, T. Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J. Virol. 79, 15573–15577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kleiman, A. et al. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int. J. Cancer 110, 459–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Herbst, H., Sauter, M. & Mueller-Lantzsch, N. Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J. Pathol. 149, 1727–1735 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Atkin, N. B. & Baker, M. C. High chromosome numbers of testicular germ cell tumors. An update. Cancer Genet. Cytogenet. 84, 90 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Buscher, K. et al. Expression of the human endogenous retrovirus-K transmembrane envelope, Rec. and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res. 16, 223–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Buscher, K. et al. Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res. 65, 4172–4180 (2005).

    Article  PubMed  Google Scholar 

  93. Thompson, F. H. et al. Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes. Cancer Genet. Cytogenet. 83, 93–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Nelson, M. A. et al. Chromosome abnormalities in malignant melanoma: clinical significance of nonrandom chromosome abnormalities in 206 cases. Cancer Genet. Cytogenet. 122, 101–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Wang-Johanning, F. et al. Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin. Cancer Res. 7, 1553–1560 (2001).

    CAS  PubMed  Google Scholar 

  96. Wang-Johanning, F. et al. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int. J. Cancer 120, 81–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Wang-Johanning, F. et al. Detecting the expression of human endogenous retrovirus E envelope transcripts in human prostate adenocarcinoma. Cancer 98, 187–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Blaise, S., de Parseval, N. & Heidmann, T. Functional characterization of two newly identified human endogenous retrovirus coding envelope genes. Retrovirology 2, 19 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Blond, J. L. et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bjerregaard, B., Holck, S., Christensen, I. J. & Larsson, L. I. Syncytin is involved in breast cancer-endothelial cell fusions. Cell. Mol. Life Sci. 63, 1906–1911 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Strick, R. et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-β. J. Mol. Med. 85, 23–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Pradhan, M., Abeler, V. M., Danielsen, H. E., Trope, C. G. & Risberg, B. A. Image cytometry DNA ploidy correlates with histological subtypes in endometrial carcinomas. Mod. Pathol. 19, 1227–1235 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Going, J. J. Epithelial carcinogenesis: challenging monoclonality. J. Pathol. 200, 1–3 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Levy, A. Monoclonality of endocrine tumours: What does it mean? Trends Endocrinol. Metab. 12, 301–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Pageau, G. J., Hall, L. L., Ganesan, S., Livingston, D. M. & Lawrence, J. B. The disappearing Barr body in breast and ovarian cancers. Nature Rev. Cancer 7, 628–633 (2007).

    Article  CAS  Google Scholar 

  106. Katona, T. M. et al. Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am. J. Surg. Pathol. 31, 1029–1037 (2007).

    Article  PubMed  Google Scholar 

  107. Pawelek, J. M. Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol. 6, 988–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Duelli, D. M. & Lazebnik, Y. A. Primary cells suppress oncogene-dependent apoptosis. Nature Cell Biol. 2, 859–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Harris, H. How tumour suppressor genes were discovered. FASEB J. 7, 978–979 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, F. R., Mohamed, A. N. & McEachern, D. Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res. 49, 4316–4321 (1989).

    CAS  PubMed  Google Scholar 

  111. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Anisimov, V. N., Ukraintseva, S. V. & Yashin, A. I. Cancer in rodents: does it tell us about cancer in humans? Nature Rev. Cancer 5, 807–819 (2005).

    Article  CAS  Google Scholar 

  113. Aractingi, S. et al. Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res. 65, 1755–1760 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Peters, B. A. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Med. 11, 261–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Cambier, J. L. & Wheeless, L. L. The binucleate cell: implications for automated cytopathology. Acta Cytol. 19, 281–285 (1975).

    CAS  PubMed  Google Scholar 

  116. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Jefford, C. E. & Irminger-Finger, I. Mechanisms of chromosome instability in cancers. Crit. Rev. Oncol. Hematol. 59, 1–14 (2006).

    Article  PubMed  Google Scholar 

  118. Weaver, B. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer 5, 773–785 (2005).

    Article  CAS  Google Scholar 

  120. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Bailey, S. M. & Murnane, J. P. Telomeres, chromosome instability and cancer. Nucleic Acids Res. 34, 2408–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649. (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Storchova, Z. et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 443, 541–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Kohler, N. Discovery of tetraploidy in a mammal. Nature 401, 341 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Rao, P. N. & Johnson, R. T. Premature chromosome condensation: a mechanism for the elimination of chromosomes in virus-fused cells. J. Cell Sci. 10, 495–513 (1972).

    CAS  PubMed  Google Scholar 

  128. Matsui, S. “Prophasing” as a possible cause of chromosome translocation in virus-fused cells. Nature New Biol. 243, 208–209 (1973).

    Article  CAS  PubMed  Google Scholar 

  129. Walter, M. A. & Goodfellow, P. N. Radiation hybrids: irradiation and fusion gene transfer. Trends Genet. 9, 352–356 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Maohuai, C., Chang, A. R. & Lo, D. Nasopharyngeal carcinoma heterogeneity of DNA content identified on cytologic preparations. Anal. Quant. Cytol. Histol. 23, 213–217 (2001).

    CAS  PubMed  Google Scholar 

  132. Baba, H. et al. DNA ploidy and its clinical implications in gastric cancer. Surgery 131, S63–S70 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our collaborators for their commitment and for discussions and we thank the Sondock family for financial support and for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik Duelli or Yuri Lazebnik.

Supplementary information

Glossary

Aneuploidy

Any deviation from the exact multiple of the euploid number of chromosomes for the species. This includes a deviation in the number of whole chromosomes (numerical aneuploidy) and in parts of the chromosomes (segmental aneuploidy).

Cell hybrids

Mononuclear cells produced by mitosis of heterokaryons. The best-known example of cell hybrids are hybridomas.

Chromosomal instability

(CIN). An abnormally high frequency of chromosomal aberrations in a cell or cell population, such as chromosome losses, gains or translocations. Chromosomal instability leads to aneuploidy.

Heterokaryon

Multinuclear cells produced by fusion of different cells.

Osteoclasts

Syncytia whose function is to dissolve bone.

Syncytium

A cell produced by fusion that has more than a few nuclei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duelli, D., Lazebnik, Y. Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7, 968–976 (2007). https://doi.org/10.1038/nrc2272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing