The emerging roles of forkhead box (Fox) proteins in cancer

Key Points

  • Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which are characterized by the forkhead DNA binding domains, and control a wide range of biological processes.

  • Fox proteins can both activate and repress gene expression through the recruitment of co-factors or repressors, primarily histone deacetylases (HDACs). In addition, Fox proteins interact extensively with other factors such as p53 and oestrogen receptor to modulate gene expression, and deregulation of Fox protein activity or expression results in changes in both direct and indirect target genes.

  • Fox proteins are largely deregulated through genetic events and alterations in post-translational modifications. Post-translational control of Fox protein activity is exerted through an intricate balance of phosphorylation, acetylation and mono-ubiquitylation that influences protein interactions and sub-cellular localization.

  • Deregulation of Fox proteins is commonly associated with tumorigenesis and cancer progression; Fox proteins may be directly targeted or deregulated by mutations in upstream factors.

  • Overexpression of FOXM1 promotes cell-cycle progression, and overexpression of FOXC2 promotes tumour metastasis and invasion. By contrast, loss of FOXO3A activity may increase resistance to apoptosis and cell-cycle progression, and deregulation of FoxP family members can result in tumour immune evasion.

  • Fox proteins may act as both direct and indirect targets for therapeutic intervention. However, the complex nature of Fox transcription factor signalling and their roles as both tumour suppressors and oncogenes makes them challenging therapeutic targets.


Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which control a wide spectrum of biological processes. As a consequence, a loss or gain of Fox function can alter cell fate and promote tumorigenesis as well as cancer progression. Here we discuss the evidence that the deregulation of Fox family transcription factors has a crucial role in the development and progression of cancer, and evaluate the emerging role of Fox proteins as direct and indirect targets for therapeutic intervention, as well as biomarkers for predicting and monitoring treatment responses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phylogenetic tree showing Fox proteins.
Figure 2: Post-translational regulation of Fox factors.


  1. 1

    Lai, E. et al. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4, 1427–1436 (1990).

    CAS  PubMed  Google Scholar 

  2. 2

    Weigel, D., Jurgens, G., Kuttner, F., Seifert, E. & Jackle, H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658 (1989).

    CAS  PubMed  Google Scholar 

  3. 3

    Krupczak-Hollis, K. et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev. Biol. 276, 74–88 (2004).

    CAS  PubMed  Google Scholar 

  4. 4

    Kalin, T. V. et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 66, 1712–1720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  6. 6

    Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007). A seminal study examining the role of individual FoxO family members in tumour suppression and identifying functional redundancy between family members for the first time.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nature Immunol. 7, 819–826 (2006).

    CAS  Google Scholar 

  10. 10

    Shu, W. et al. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134, 1991–2000 (2007).

    CAS  PubMed  Google Scholar 

  11. 11

    Campbell, D. J. & Ziegler, S. F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nature Rev. Immunol. 7, 305–310 (2007).

    CAS  Google Scholar 

  12. 12

    Perreault, N., Katz, J. P., Sackett, S. D. & Kaestner, K. H. Foxl1 controls the Wnt/beta-catenin pathway by modulating the expression of proteoglycans in the gut. J. Biol. Chem. 276, 43328–33 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Perreault, N., Sackett, S. D., Katz, J. P., Furth, E. E. & Kaestner, K. H. Foxl1 is a mesenchymal modifier of Min in carcinogenesis of stomach and colon. Genes Dev. 19, 311–315 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746 (2001).

    CAS  PubMed  Google Scholar 

  15. 15

    Dong, X. Y. et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res. 66, 6998–7006 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Wlodarska, I. et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19, 1299–1305 (2005).

    CAS  PubMed  Google Scholar 

  17. 17

    Barrans, S. L., Fenton, J. A., Banham, A., Owen, R. G. & Jack, A. S. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 104, 2933–2935 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Haralambieva, E. et al. Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 20, 1300–1303 (2006).

    CAS  PubMed  Google Scholar 

  19. 19

    Chae, W. J., Henegariu, O., Lee, S. K. & Bothwell, A. L. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl Acad. Sci. USA 103, 9631–9636 (2006).

    CAS  PubMed  Google Scholar 

  20. 20

    Stroud, J. C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166 (2006).

    CAS  PubMed  Google Scholar 

  21. 21

    Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    CAS  Google Scholar 

  22. 22

    Korver, W. et al. The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics 46, 435–442 (1997).

    CAS  PubMed  Google Scholar 

  23. 23

    Spirin, K. S. et al. p27/Kip1 mutation found in breast cancer. Cancer Res. 56, 2400–2404 (1996).

    CAS  PubMed  Google Scholar 

  24. 24

    Singh, B. et al. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res. 61, 4506–4513 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Rodriguez, S. et al. Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area. Cancer Genet. Cytogenet. 157, 140–147 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Heselmeyer, K. et al. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer 19, 233–240 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Teh, M. T. et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 62, 4773–4780 (2002).

    CAS  Google Scholar 

  28. 28

    Madureira, P. A. et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J. Biol. Chem. 281, 25167–25176 (2006).

    CAS  PubMed  Google Scholar 

  29. 29

    Liu, M. et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 66, 3593–3602 (2006).

    CAS  PubMed  Google Scholar 

  30. 30

    Kim, I. M. et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 66, 2153–2161 (2006).

    CAS  PubMed  Google Scholar 

  31. 31

    Kalinichenko, V. V. et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 18, 830–850 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    CAS  Google Scholar 

  33. 33

    Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Woods, Y. L. et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J. 355, 597–607 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005).

    CAS  Google Scholar 

  38. 38

    Heasley, L. E. & Han, S. Y. JNK regulation of oncogenesis. Mol. Cells 21, 167–173 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49–62 (2007).

    CAS  Google Scholar 

  40. 40

    Kim, H. J., Hawke, N. & Baldwin, A. S. NF-κB and IKK as therapeutic targets in cancer. Cell Death Differ. 13, 738–747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Scheijen, B., Ngo, H. T., Kang, H. & Griffin, J. D. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23, 3338–3349 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Shore, A. M. et al. Epstein-Barr virus represses the FoxO1 transcription factor through latent membrane protein 1 and latent membrane protein 2A. J. Virol. 80, 11191–11199 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Trotman, L. C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Jin, G. S. et al. Expression and intracellular localization of FKHRL1 in mammary gland neoplasms. Acta Med. Okayama 58, 197–205 (2004).

    CAS  PubMed  Google Scholar 

  45. 45

    Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Coffer, P. J. & Burgering, B. M. Stressed marrow: FoxOs stem tumour growth. Nature Cell Biol. 9, 251–253 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Ali, I. U., Schriml, L. M. & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J. Natl Cancer Inst. 91, 1922–1932 (1999).

    CAS  Google Scholar 

  48. 48

    Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  49. 49

    Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Leslie, N. R. & Downes, C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell Biol. 20, 8969–8982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  Google Scholar 

  54. 54

    Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). This study demonstrates for the first time that simultaneous depletion of FoxO1, 3 and 4 results in stem cell exhaustion, and that redundancy exists between different FoxO family members in this context.

    CAS  PubMed  Google Scholar 

  55. 55

    Major, M. L., Lepe, R. & Costa, R. H. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell Biol. 24, 2649–2661 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ma, R. Y. et al. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J. Cell Sci. 118, 795–806 (2005).

    CAS  PubMed  Google Scholar 

  57. 57

    Wierstra, I. & Alves, J. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol. Chem. 387, 949–962 (2006).

    CAS  PubMed  Google Scholar 

  58. 58

    Chau, B. N. & Wang, J. Y. Coordinated regulation of life and death by RB. Nature Rev. Cancer 3, 130–138 (2003).

    CAS  Google Scholar 

  59. 59

    Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    CAS  PubMed  Google Scholar 

  60. 60

    Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    CAS  Google Scholar 

  61. 61

    Worm, J. et al. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene 19, 5111–5115 (2000).

    CAS  PubMed  Google Scholar 

  62. 62

    Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    CAS  PubMed  Google Scholar 

  63. 63

    Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    CAS  PubMed  Google Scholar 

  64. 64

    Luscher-Firzlaff, J. M. et al. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 18, 5620–5630 (1999).

    CAS  PubMed  Google Scholar 

  65. 65

    Zukerberg, L. R. et al. Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene. Mod. Pathol. 8, 560–567 (1995).

    CAS  PubMed  Google Scholar 

  66. 66

    Tan, Y., Raychaudhuri, P. & Costa, R. H. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol. Cell Biol. 27, 1007–1016 (2007).

    CAS  PubMed  Google Scholar 

  67. 67

    Chen, C. R. et al. Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer. Cancer Res. 65, 6017–6021 (2005).

    CAS  PubMed  Google Scholar 

  68. 68

    Matsuoka, S. et al. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res. 61, 5362–5365 (2001).

    CAS  PubMed  Google Scholar 

  69. 69

    Ghosh, J. C., Dohi, T., Raskett, C. M., Kowalik, T. F. & Altieri, D. C. Activated checkpoint kinase 2 provides a survival signal for tumor cells. Cancer Res. 66, 11576–11579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004). The role of SIRT1 (sirtuin) in FOXO3A signalling remains contentious; this article provides the most recent viewpoint and suggests that SIRT1 may differentially affect FOXO3A target gene expression.

    CAS  Google Scholar 

  71. 71

    Lam, E. W., Francis, R. E. & Petkovic, M. FOXO transcription factors: key regulators of cell fate. Biochem Soc. Trans. 34, 722–726 (2006).

    CAS  PubMed  Google Scholar 

  72. 72

    Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    CAS  PubMed  Google Scholar 

  73. 73

    Ford, J., Jiang, M. & Milner, J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65, 10457–10463 (2005).

    CAS  PubMed  Google Scholar 

  74. 74

    Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V. & Bai, W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24, 1021–1032 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol. 8, 1064–1073 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Masuya, D. et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol. 208, 724–732 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    CAS  PubMed  Google Scholar 

  78. 78

    Munoz-Fontela, C. et al. Latent protein LANA2 from Kaposi's sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J. Virol. 81, 1511–1516 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Laoukili, J. et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biol. 7, 126–136 (2005). The first paper to define the role of FOXM in chromosome stability.

    CAS  PubMed  Google Scholar 

  80. 80

    Wang, X., Kiyokawa, H., Dennewitz, M. B. & Costa, R. H. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl Acad. Sci. USA 99, 16881–16886 (2002).

    CAS  PubMed  Google Scholar 

  81. 81

    Wonsey, D. R. & Follettie, M. T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 65, 5181–5189 (2005).

    CAS  PubMed  Google Scholar 

  82. 82

    Wang, I. C. et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell Biol. 25, 10875–10894 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Kalinichenko, V. V. et al. Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J. Biol. Chem. 278, 37888–37894 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Wang, X. et al. Increased hepatic Forkhead Box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J. Biol. Chem. 277, 44310–44316 (2002).

    CAS  PubMed  Google Scholar 

  85. 85

    Delpuech, O. et al. Induction of Mxi1-SRα by FOXO3a contributes to repression of Myc dependent gene expression. Mol. Cell Biol. 27, 4917–4930 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Singh, H., Medina, K. L. & Pongubala, J. M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl Acad. Sci. USA 102, 4949–4953 (2005).

    CAS  PubMed  Google Scholar 

  87. 87

    Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005). A study showing for the first time that ER binding requires FoxA1 at distal sites, revealing a potentially critical role of FoxA1 deregulation in breast cancer progression.

    CAS  PubMed  Google Scholar 

  88. 88

    Schuur, E. R. et al. Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J. Biol. Chem. 276, 33554–33560 (2001).

    CAS  PubMed  Google Scholar 

  89. 89

    Zhao, H. H. et al. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J. Biol. Chem. 276, 27907–27912 (2001).

    CAS  PubMed  Google Scholar 

  90. 90

    Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Miyamoto, K. et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int. J. Cancer 116, 407–414 (2005).

    CAS  PubMed  Google Scholar 

  92. 92

    Eeckhoute, J., Carroll, J. S., Geistlinger, T. R., Torres-Arzayus, M. I. & Brown, M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20, 2513–2526 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Williamson, E. A. et al. BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene 25, 1391–1399 (2006).

    CAS  PubMed  Google Scholar 

  94. 94

    Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007). This article suggests a model for the FOXP3 mediated transcriptional control of T Reg -cell function by an interaction between FOXP3 and AML1, leading to repression of AML1 activity.

    CAS  PubMed  Google Scholar 

  95. 95

    van der Horst, A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nature Rev. Mol. Cell Biol. 8, 440–450 (2007).

    CAS  Google Scholar 

  96. 96

    Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Seo, S. et al. The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458–470 (2006).

    CAS  Google Scholar 

  98. 98

    Zhang, H. et al. Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr. Biol. 13, 1625–1629 (2003).

    CAS  PubMed  Google Scholar 

  99. 99

    Furuyama, T. et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279, 34741–34749 (2004).

    CAS  PubMed  Google Scholar 

  100. 100

    Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Fosbrink, M., Niculescu, F., Rus, V., Shin, M. L. & Rus, H. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. J. Biol. Chem. 281, 19009–19018 (2006).

    CAS  PubMed  Google Scholar 

  102. 102

    Daly, C. et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc. Natl Acad. Sci. USA 103, 15491–15496 (2006).

    CAS  PubMed  Google Scholar 

  103. 103

    Mani, S. A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl Acad. Sci. USA 104, 10069–10074 (2007). The first direct evidence for the role of FOXC2 in tumour progression through promotion of tumour metastasis and invasion.

    CAS  PubMed  Google Scholar 

  104. 104

    Wolf, I. et al. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int. J. Cancer 120, 1013–1022 (2007).

    CAS  Google Scholar 

  105. 105

    Birkenkamp, K. U. et al. FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J. Biol. Chem. 282, 2211–2220 (2007).

    CAS  PubMed  Google Scholar 

  106. 106

    Fan, W. et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J. Biol. Chem. 282, 7329–7338 (2007).

    CAS  PubMed  Google Scholar 

  107. 107

    Li, J., Wang, E., Rinaldo, F. & Datta, K. Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene 24, 5510–5520 (2005).

    CAS  PubMed  Google Scholar 

  108. 108

    Chen, G. et al. Modulation of androgen receptor transactivation by FoxH1. A newly identified androgen receptor corepressor. J. Biol. Chem. 280, 36355–36363 (2005).

    CAS  PubMed  Google Scholar 

  109. 109

    Yu, X. et al. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. NY Acad. Sci. 1061, 77–93 (2005).

    CAS  PubMed  Google Scholar 

  110. 110

    Sunters, A. et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem. 278, 49795–49805 (2003).

    CAS  PubMed  Google Scholar 

  111. 111

    Sunters, A. et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 66, 212–220 (2006).

    CAS  PubMed  Google Scholar 

  112. 112

    Zeng, Z. et al. Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372–1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res. 66, 3737–3746 (2006).

    CAS  PubMed  Google Scholar 

  113. 113

    Essafi, A. et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24, 2317–2329 (2005).

    CAS  PubMed  Google Scholar 

  114. 114

    Reid, A., Vidal, L., Shaw, H. & de Bono, J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer 43, 481–489 (2007).

    CAS  Google Scholar 

  115. 115

    Real, P. J. et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 65, 8151–8157 (2005).

    CAS  PubMed  Google Scholar 

  116. 116

    Yang, J. Y., Xia, W. & Hu, M. C. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol. 29, 643–648 (2006).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Matsumoto, M., Han, S., Kitamura, T. & Accili, D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Nair, S., Boczkowski, D., Fassnacht, M., Pisetsky, D. & Gilboa, E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 67, 371–380 (2007).

    CAS  PubMed  Google Scholar 

  120. 120

    Radhakrishnan, S. K. et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box m1. Cancer Res. 66, 9731–9735 (2006).

    CAS  PubMed  Google Scholar 

  121. 121

    Gusarova, G. A. et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest. 117, 99–111 (2007).

    CAS  Google Scholar 

  122. 122

    Gomez-Gutierrez, J. G. et al. Adenovirus-mediated gene transfer of FKHRL1 triple mutant efficiently induces apoptosis in melanoma cells. Cancer Biol. Ther. 5, 875–883 (2006).

    CAS  PubMed  Google Scholar 

  123. 123

    Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Rev. Cancer 2, 101–112 (2002).

    Google Scholar 

  124. 124

    Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    CAS  PubMed  Google Scholar 

  125. 125

    Weigelt, J., Climent, I., Dahlman-Wright, K. & Wikstrom, M. Solution structure of the DNA binding domain of the human forkhead transcription factor AFX (FOXO4). Biochemistry 40, 5861–5869 (2001).

    CAS  PubMed  Google Scholar 

  126. 126

    Barthel, A., Schmoll, D. & Unterman, T. G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189 (2005).

    CAS  PubMed  Google Scholar 

  127. 127

    Li, S., Weidenfeld, J. & Morrisey, E. E. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell Biol. 24, 809–822 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Rinner, O. et al. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nature Biotechnol. 25, 345–352 (2007).

    CAS  Google Scholar 

  129. 129

    Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    CAS  Google Scholar 

  130. 130

    Luscher-Firzlaff, J. M., Lilischkis, R. & Luscher, B. Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett. 580, 1716–1722 (2006).

    PubMed  Google Scholar 

  131. 131

    Liu, H., Komai-Koma, M., Xu, D. & Liew, F. Y. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 103, 7048–7053 (2006).

    CAS  Google Scholar 

  132. 132

    Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).

    CAS  PubMed  Google Scholar 

  134. 134

    Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    CAS  PubMed  Google Scholar 

  136. 136

    Modur, V., Nagarajan, R., Evers, B. M. & Milbrandt, J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J. Biol. Chem. 277, 47928–47937 (2002).

    CAS  PubMed  Google Scholar 

  137. 137

    Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450–2452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Guo, S. & Sonenshein, G. E. Forkhead box transcription factor FOXO3a regulates estrogen receptor α expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell Biol. 24, 8681–8690 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Liu, J. W. et al. Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene 24, 2020–2031 (2005).

    CAS  PubMed  Google Scholar 

  140. 140

    Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  142. 142

    Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 178, 2883–2892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  144. 144

    Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  145. 145

    Streubel, B., Vinatzer, U., Lamprecht, A., Raderer, M. & Chott, A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19, 652–658 (2005).

    CAS  PubMed  Google Scholar 

  146. 146

    Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    CAS  PubMed  Google Scholar 

  147. 147

    Halmos, B. et al. A transcriptional profiling study of CCAAT/enhancer binding protein targets identifies hepatocyte nuclear factor 3 beta as a novel tumor suppressor in lung cancer. Cancer Res. 64, 4137–4147 (2004).

    CAS  PubMed  Google Scholar 

Download references


S.M. is a research fellow supported by Cancer Research UK, and E.W.-F.L. is supported by grants from Cancer Research UK, the Leukaemia Research Fund, the Association for International Cancer Research and the Biotechnology and Biological Sciences Research Council.

Author information



Corresponding author

Correspondence to Eric W. -F. Lam.

Related links

Related links


Eric W.-F. Lam's homepage


Mitotic spindle

A component of the eukaryotic cytoskeleton that is required for chromosome segregation during mitosis. During spindle assembly in prometaphase, spindle microtubules attach to the kinetochore, a multiprotein complex that assembles on centromeric DNA, and chromosomes are pulled into alignment along the spindle midzone to form the metaphase spindle. Inaccurate chromosome segregation leads to aneuploidy, which may be associated with tumorigenesis.


Vascular tumours that are often visible as a red skin lesion owing to abnormal build up of blood vessels in the skin or internal organs.


A subset of CD4+CD25+ regulatory T cells that control the responses of other T cells and tolerance to self antigens, which are referred to as naturally occurring regulatory T cells (TReg cells). TRegs are characterized by the expression of CD25 and FOXP3, and can suppress the activation of other T cells in a contact-dependent manner.

Compound heterozygote

Two different abnormal alleles at one locus, one on each chromosome of a pair.

Alveolar rhabdomyosarcoma

A paediatric soft tissue cancer related to the striated muscle lineage and characterized by the chromosomal translocations t(2;13)(q35;q14) and t(1;13)(p36;q14) leading to juxtaposition of PAX and FoxO family members.

Promyelocytic leukaemia (PML) nuclear bodies

Protein complexes that associate with the nuclear matrix and form the scaffold component of nuclear bodies. Many of the recruited proteins are involved in apoptosis control, and may also be directly involved in apoptosis and senescence. The formation of PML nuclear bodies may be modulated by a range of stress-related signalling pathways.

Oxidative stress

An excess of reactive oxygen species (ROS), caused by an imbalance between the rate of reduction and oxidation of oxygen, leading to free radical generation and damage to cellular components such as DNA and lipids. Manganese-containing superoxide dismutase (MnSOD), which is located within the mitochondrial matrix, facilitates the dismutation of the superoxide radicals to H202, and catalase is responsible for the oxidation of oxygen from H202 to H20. GADD45, which is induced by environmental stress and DNA damage, activates the stress kinase pathway, stimulates DNA excision repair, and inhibits entry of cells into S phase.


A period throughout which the cell does not divide. Relative quiescence is a defining characteristic of haematopoietic stem cells; in contrast to the rapid proliferation and terminal differentiation of their progeny. Stem cell quiescence is crucial in protecting the stem cell compartment.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Myatt, S., Lam, EF. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7, 847–859 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing