Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of forkhead box (Fox) proteins in cancer

Key Points

  • Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which are characterized by the forkhead DNA binding domains, and control a wide range of biological processes.

  • Fox proteins can both activate and repress gene expression through the recruitment of co-factors or repressors, primarily histone deacetylases (HDACs). In addition, Fox proteins interact extensively with other factors such as p53 and oestrogen receptor to modulate gene expression, and deregulation of Fox protein activity or expression results in changes in both direct and indirect target genes.

  • Fox proteins are largely deregulated through genetic events and alterations in post-translational modifications. Post-translational control of Fox protein activity is exerted through an intricate balance of phosphorylation, acetylation and mono-ubiquitylation that influences protein interactions and sub-cellular localization.

  • Deregulation of Fox proteins is commonly associated with tumorigenesis and cancer progression; Fox proteins may be directly targeted or deregulated by mutations in upstream factors.

  • Overexpression of FOXM1 promotes cell-cycle progression, and overexpression of FOXC2 promotes tumour metastasis and invasion. By contrast, loss of FOXO3A activity may increase resistance to apoptosis and cell-cycle progression, and deregulation of FoxP family members can result in tumour immune evasion.

  • Fox proteins may act as both direct and indirect targets for therapeutic intervention. However, the complex nature of Fox transcription factor signalling and their roles as both tumour suppressors and oncogenes makes them challenging therapeutic targets.

Abstract

Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which control a wide spectrum of biological processes. As a consequence, a loss or gain of Fox function can alter cell fate and promote tumorigenesis as well as cancer progression. Here we discuss the evidence that the deregulation of Fox family transcription factors has a crucial role in the development and progression of cancer, and evaluate the emerging role of Fox proteins as direct and indirect targets for therapeutic intervention, as well as biomarkers for predicting and monitoring treatment responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree showing Fox proteins.
Figure 2: Post-translational regulation of Fox factors.

Similar content being viewed by others

References

  1. Lai, E. et al. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4, 1427–1436 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Weigel, D., Jurgens, G., Kuttner, F., Seifert, E. & Jackle, H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Krupczak-Hollis, K. et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev. Biol. 276, 74–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kalin, T. V. et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 66, 1712–1720 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007). A seminal study examining the role of individual FoxO family members in tumour suppression and identifying functional redundancy between family members for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nature Immunol. 7, 819–826 (2006).

    Article  CAS  Google Scholar 

  10. Shu, W. et al. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134, 1991–2000 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, D. J. & Ziegler, S. F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nature Rev. Immunol. 7, 305–310 (2007).

    Article  CAS  Google Scholar 

  12. Perreault, N., Katz, J. P., Sackett, S. D. & Kaestner, K. H. Foxl1 controls the Wnt/beta-catenin pathway by modulating the expression of proteoglycans in the gut. J. Biol. Chem. 276, 43328–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Perreault, N., Sackett, S. D., Katz, J. P., Furth, E. E. & Kaestner, K. H. Foxl1 is a mesenchymal modifier of Min in carcinogenesis of stomach and colon. Genes Dev. 19, 311–315 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Dong, X. Y. et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res. 66, 6998–7006 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wlodarska, I. et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19, 1299–1305 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Barrans, S. L., Fenton, J. A., Banham, A., Owen, R. G. & Jack, A. S. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 104, 2933–2935 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Haralambieva, E. et al. Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 20, 1300–1303 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Chae, W. J., Henegariu, O., Lee, S. K. & Bothwell, A. L. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl Acad. Sci. USA 103, 9631–9636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stroud, J. C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Korver, W. et al. The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics 46, 435–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Spirin, K. S. et al. p27/Kip1 mutation found in breast cancer. Cancer Res. 56, 2400–2404 (1996).

    CAS  PubMed  Google Scholar 

  24. Singh, B. et al. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res. 61, 4506–4513 (2001).

    CAS  PubMed  Google Scholar 

  25. Rodriguez, S. et al. Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area. Cancer Genet. Cytogenet. 157, 140–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Heselmeyer, K. et al. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosomes Cancer 19, 233–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Teh, M. T. et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 62, 4773–4780 (2002).

    CAS  PubMed  Google Scholar 

  28. Madureira, P. A. et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J. Biol. Chem. 281, 25167–25176 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, M. et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 66, 3593–3602 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, I. M. et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 66, 2153–2161 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kalinichenko, V. V. et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev. 18, 830–850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    Article  CAS  Google Scholar 

  33. Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Woods, Y. L. et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J. 355, 597–607 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005).

    Article  CAS  Google Scholar 

  38. Heasley, L. E. & Han, S. Y. JNK regulation of oncogenesis. Mol. Cells 21, 167–173 (2006).

    CAS  PubMed  Google Scholar 

  39. Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49–62 (2007).

    Article  CAS  Google Scholar 

  40. Kim, H. J., Hawke, N. & Baldwin, A. S. NF-κB and IKK as therapeutic targets in cancer. Cell Death Differ. 13, 738–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Scheijen, B., Ngo, H. T., Kang, H. & Griffin, J. D. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23, 3338–3349 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Shore, A. M. et al. Epstein-Barr virus represses the FoxO1 transcription factor through latent membrane protein 1 and latent membrane protein 2A. J. Virol. 80, 11191–11199 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trotman, L. C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin, G. S. et al. Expression and intracellular localization of FKHRL1 in mammary gland neoplasms. Acta Med. Okayama 58, 197–205 (2004).

    CAS  PubMed  Google Scholar 

  45. Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coffer, P. J. & Burgering, B. M. Stressed marrow: FoxOs stem tumour growth. Nature Cell Biol. 9, 251–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ali, I. U., Schriml, L. M. & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J. Natl Cancer Inst. 91, 1922–1932 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Leslie, N. R. & Downes, C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell Biol. 20, 8969–8982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). This study demonstrates for the first time that simultaneous depletion of FoxO1, 3 and 4 results in stem cell exhaustion, and that redundancy exists between different FoxO family members in this context.

    Article  CAS  PubMed  Google Scholar 

  55. Major, M. L., Lepe, R. & Costa, R. H. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell Biol. 24, 2649–2661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, R. Y. et al. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J. Cell Sci. 118, 795–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Wierstra, I. & Alves, J. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol. Chem. 387, 949–962 (2006).

    CAS  PubMed  Google Scholar 

  58. Chau, B. N. & Wang, J. Y. Coordinated regulation of life and death by RB. Nature Rev. Cancer 3, 130–138 (2003).

    Article  CAS  Google Scholar 

  59. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Worm, J. et al. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene 19, 5111–5115 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Luscher-Firzlaff, J. M. et al. Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 18, 5620–5630 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zukerberg, L. R. et al. Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene. Mod. Pathol. 8, 560–567 (1995).

    CAS  PubMed  Google Scholar 

  66. Tan, Y., Raychaudhuri, P. & Costa, R. H. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol. Cell Biol. 27, 1007–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, C. R. et al. Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer. Cancer Res. 65, 6017–6021 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Matsuoka, S. et al. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res. 61, 5362–5365 (2001).

    CAS  PubMed  Google Scholar 

  69. Ghosh, J. C., Dohi, T., Raskett, C. M., Kowalik, T. F. & Altieri, D. C. Activated checkpoint kinase 2 provides a survival signal for tumor cells. Cancer Res. 66, 11576–11579 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004). The role of SIRT1 (sirtuin) in FOXO3A signalling remains contentious; this article provides the most recent viewpoint and suggests that SIRT1 may differentially affect FOXO3A target gene expression.

    Article  CAS  PubMed  Google Scholar 

  71. Lam, E. W., Francis, R. E. & Petkovic, M. FOXO transcription factors: key regulators of cell fate. Biochem Soc. Trans. 34, 722–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ford, J., Jiang, M. & Milner, J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65, 10457–10463 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V. & Bai, W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24, 1021–1032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Masuya, D. et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol. 208, 724–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Munoz-Fontela, C. et al. Latent protein LANA2 from Kaposi's sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J. Virol. 81, 1511–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Laoukili, J. et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biol. 7, 126–136 (2005). The first paper to define the role of FOXM in chromosome stability.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, X., Kiyokawa, H., Dennewitz, M. B. & Costa, R. H. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl Acad. Sci. USA 99, 16881–16886 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wonsey, D. R. & Follettie, M. T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 65, 5181–5189 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, I. C. et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell Biol. 25, 10875–10894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kalinichenko, V. V. et al. Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J. Biol. Chem. 278, 37888–37894 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, X. et al. Increased hepatic Forkhead Box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J. Biol. Chem. 277, 44310–44316 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Delpuech, O. et al. Induction of Mxi1-SRα by FOXO3a contributes to repression of Myc dependent gene expression. Mol. Cell Biol. 27, 4917–4930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Singh, H., Medina, K. L. & Pongubala, J. M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005). A study showing for the first time that ER binding requires FoxA1 at distal sites, revealing a potentially critical role of FoxA1 deregulation in breast cancer progression.

    Article  CAS  PubMed  Google Scholar 

  88. Schuur, E. R. et al. Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J. Biol. Chem. 276, 33554–33560 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, H. H. et al. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J. Biol. Chem. 276, 27907–27912 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miyamoto, K. et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int. J. Cancer 116, 407–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Eeckhoute, J., Carroll, J. S., Geistlinger, T. R., Torres-Arzayus, M. I. & Brown, M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20, 2513–2526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williamson, E. A. et al. BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene 25, 1391–1399 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007). This article suggests a model for the FOXP3 mediated transcriptional control of T Reg -cell function by an interaction between FOXP3 and AML1, leading to repression of AML1 activity.

    Article  CAS  PubMed  Google Scholar 

  95. van der Horst, A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nature Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Article  CAS  Google Scholar 

  96. Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Seo, S. et al. The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, H. et al. Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr. Biol. 13, 1625–1629 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Furuyama, T. et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279, 34741–34749 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fosbrink, M., Niculescu, F., Rus, V., Shin, M. L. & Rus, H. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1. J. Biol. Chem. 281, 19009–19018 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Daly, C. et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc. Natl Acad. Sci. USA 103, 15491–15496 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mani, S. A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl Acad. Sci. USA 104, 10069–10074 (2007). The first direct evidence for the role of FOXC2 in tumour progression through promotion of tumour metastasis and invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolf, I. et al. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int. J. Cancer 120, 1013–1022 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Birkenkamp, K. U. et al. FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J. Biol. Chem. 282, 2211–2220 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Fan, W. et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J. Biol. Chem. 282, 7329–7338 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Li, J., Wang, E., Rinaldo, F. & Datta, K. Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene 24, 5510–5520 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, G. et al. Modulation of androgen receptor transactivation by FoxH1. A newly identified androgen receptor corepressor. J. Biol. Chem. 280, 36355–36363 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, X. et al. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. NY Acad. Sci. 1061, 77–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Sunters, A. et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem. 278, 49795–49805 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Sunters, A. et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 66, 212–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Zeng, Z. et al. Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372–1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res. 66, 3737–3746 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Essafi, A. et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24, 2317–2329 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Reid, A., Vidal, L., Shaw, H. & de Bono, J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer 43, 481–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Real, P. J. et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 65, 8151–8157 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, J. Y., Xia, W. & Hu, M. C. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol. 29, 643–648 (2006).

    PubMed  Google Scholar 

  117. Matsumoto, M., Han, S., Kitamura, T. & Accili, D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nair, S., Boczkowski, D., Fassnacht, M., Pisetsky, D. & Gilboa, E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 67, 371–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Radhakrishnan, S. K. et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box m1. Cancer Res. 66, 9731–9735 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Gusarova, G. A. et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest. 117, 99–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Gomez-Gutierrez, J. G. et al. Adenovirus-mediated gene transfer of FKHRL1 triple mutant efficiently induces apoptosis in melanoma cells. Cancer Biol. Ther. 5, 875–883 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Rev. Cancer 2, 101–112 (2002).

    Article  Google Scholar 

  124. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Weigelt, J., Climent, I., Dahlman-Wright, K. & Wikstrom, M. Solution structure of the DNA binding domain of the human forkhead transcription factor AFX (FOXO4). Biochemistry 40, 5861–5869 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Barthel, A., Schmoll, D. & Unterman, T. G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Li, S., Weidenfeld, J. & Morrisey, E. E. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol. Cell Biol. 24, 809–822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rinner, O. et al. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nature Biotechnol. 25, 345–352 (2007).

    Article  CAS  Google Scholar 

  129. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Luscher-Firzlaff, J. M., Lilischkis, R. & Luscher, B. Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett. 580, 1716–1722 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. Liu, H., Komai-Koma, M., Xu, D. & Liew, F. Y. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 103, 7048–7053 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Modur, V., Nagarajan, R., Evers, B. M. & Milbrandt, J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J. Biol. Chem. 277, 47928–47937 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450–2452 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Guo, S. & Sonenshein, G. E. Forkhead box transcription factor FOXO3a regulates estrogen receptor α expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell Biol. 24, 8681–8690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, J. W. et al. Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene 24, 2020–2031 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 178, 2883–2892 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Streubel, B., Vinatzer, U., Lamprecht, A., Raderer, M. & Chott, A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19, 652–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Halmos, B. et al. A transcriptional profiling study of CCAAT/enhancer binding protein targets identifies hepatocyte nuclear factor 3 beta as a novel tumor suppressor in lung cancer. Cancer Res. 64, 4137–4147 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M. is a research fellow supported by Cancer Research UK, and E.W.-F.L. is supported by grants from Cancer Research UK, the Leukaemia Research Fund, the Association for International Cancer Research and the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. -F. Lam.

Related links

Related links

FURTHER INFORMATION

Eric W.-F. Lam's homepage

Glossary

Mitotic spindle

A component of the eukaryotic cytoskeleton that is required for chromosome segregation during mitosis. During spindle assembly in prometaphase, spindle microtubules attach to the kinetochore, a multiprotein complex that assembles on centromeric DNA, and chromosomes are pulled into alignment along the spindle midzone to form the metaphase spindle. Inaccurate chromosome segregation leads to aneuploidy, which may be associated with tumorigenesis.

Haemangiomas

Vascular tumours that are often visible as a red skin lesion owing to abnormal build up of blood vessels in the skin or internal organs.

TRegs

A subset of CD4+CD25+ regulatory T cells that control the responses of other T cells and tolerance to self antigens, which are referred to as naturally occurring regulatory T cells (TReg cells). TRegs are characterized by the expression of CD25 and FOXP3, and can suppress the activation of other T cells in a contact-dependent manner.

Compound heterozygote

Two different abnormal alleles at one locus, one on each chromosome of a pair.

Alveolar rhabdomyosarcoma

A paediatric soft tissue cancer related to the striated muscle lineage and characterized by the chromosomal translocations t(2;13)(q35;q14) and t(1;13)(p36;q14) leading to juxtaposition of PAX and FoxO family members.

Promyelocytic leukaemia (PML) nuclear bodies

Protein complexes that associate with the nuclear matrix and form the scaffold component of nuclear bodies. Many of the recruited proteins are involved in apoptosis control, and may also be directly involved in apoptosis and senescence. The formation of PML nuclear bodies may be modulated by a range of stress-related signalling pathways.

Oxidative stress

An excess of reactive oxygen species (ROS), caused by an imbalance between the rate of reduction and oxidation of oxygen, leading to free radical generation and damage to cellular components such as DNA and lipids. Manganese-containing superoxide dismutase (MnSOD), which is located within the mitochondrial matrix, facilitates the dismutation of the superoxide radicals to H202, and catalase is responsible for the oxidation of oxygen from H202 to H20. GADD45, which is induced by environmental stress and DNA damage, activates the stress kinase pathway, stimulates DNA excision repair, and inhibits entry of cells into S phase.

Quiescence

A period throughout which the cell does not divide. Relative quiescence is a defining characteristic of haematopoietic stem cells; in contrast to the rapid proliferation and terminal differentiation of their progeny. Stem cell quiescence is crucial in protecting the stem cell compartment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myatt, S., Lam, EF. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7, 847–859 (2007). https://doi.org/10.1038/nrc2223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing