Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Treating prostate cancer: a rationale for targeting local oestrogens

Abstract

Prostate cancer is the most commonly diagnosed cancer and the second most common cause of cancer-related death in men, and benign prostatic hyperplasia is the most common benign condition known to occur in ageing men. Oestrogen has been implicated in the development of prostate cancer, and offers a promising new avenue for treatment. Despite this, the role of oestrogens in the prostate is complex. This Perspective presents a rationale for a targeted approach for the treatment of prostate disease through the use of selective oestrogen-receptor modulators in conjunction with contemporary androgen-ablation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common and divergent mechanisms for the development of human prostate cancer and/or BPH.
Figure 2: The role of androgens and oestrogens in the development of BPH and prostate cancer.
Figure 3: The potential for a positive-feedback cycle between aromatase, oestrogens and inflammation leading to prostate cancer.
Figure 4: A loss of local ERβ activation directly results in prostatic hyperplasia.

Similar content being viewed by others

References

  1. Cunha, G. et al. The endocrinology and developmental biology of the prostate. Endocrine Rev. 8, 338–362 (1987).

    Article  CAS  Google Scholar 

  2. Wilding, G. The importance of steroid hormones in prostate cancer. Cancer Surv. 14, 113–130 (1992).

    CAS  PubMed  Google Scholar 

  3. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. The effect of castration, of estrogen and of androgen interaction on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    CAS  Google Scholar 

  4. Berry, S. J., Coffey, D. S., Walsh, P. C. & Ewing, L. L. The development of human benign prostatic hyperplasia with age. J. Urol. 132, 474–479. (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Ekman, P. BPH epidemiology and risk factors. Prostate Suppl. 2, 23–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Partin, A. W. et al. Concordance rates for benign prostatic disease among twins suggest hereditary influence. Urology 44, 646–650 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Leav, I., Merk, F. B., Kwan, P. W. & Ho, S. M. Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate 15, 23–40 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Leav, I. et al. Comparative studies of the estrogen receptors β and α and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am. J. Pathol. 159, 79–92 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cunha, G. R., Wang, Y. Z., Hayward, S. W. & Risbridger, G. P. Estrogenic effects on prostatic differentiation and carcinogenesis. Reprod. Fertil. Dev. 13, 285–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ross, R. K. et al. 5-α-reductase activity and risk of prostate cancer among Japanese and US white and black males. Lancet 339, 887–889 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Bosland, M. C. The role of steroid hormones in prostate carcinogenesis. J. Natl Cancer Inst. Monogr. 39–66 (2000).

  12. Hill, P., Garbaczewski, L. & Walker, A. R. Age, environmental factors and prostatic cancer. Med. Hypotheses 14, 29–39 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Jarred, R. et al. Induction of apoptosis in low grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Res. (2002).

  14. Bylund, A. et al. Rye bran and soy protein delay growth and increase apoptosis of human LNCaP prostate adenocarcinoma in nude mice. Prostate 42, 304–314. (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Landstrom, M. et al. Estrogen induces apoptosis in a rat prostatic adenocarcinoma: association with an increased expression of TGF-beta 1 and its type-I and type-II receptors. Int. J. Cancer 67, 573–579 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Peterson, G. & Barnes, S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22, 335–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J., Eltoum, I. E. & Lamartiniere, C. A. Dietary genistein suppresses chemically induced prostate cancer in Lobund-Wistar rats. Cancer Lett. 186, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Adlercreutz, H. Epidemiology of phytoestrogens. Baillieres Clin. Endocrinol. Metab. 12, 605–623. (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Adlercreutz, H., Markkanen, H. & Watanabe, S. Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342, 1209–1210 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Morton, M., Turkes, A., Denis, L. & Griffiths, K. Can dietary factors influence prostatic disease? BJU Int. 84, 594–554 (1999).

    Google Scholar 

  21. Morton, M. S. et al. Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 32, 122–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Ellem, S. J., Schmitt, J. F., Pedersen, J. S., Frydenberg, M. & Risbridger, G. P. Local aromatase expression in human prostate is altered in malignancy. J. Clin. Endocrinol. Metab. 89, 2434–2441 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hiramatsu, M. et al. Aromatase in hyperplasia and carcinoma of the human prostate. The Prostate 31, 118–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Harada, N., Utsumi, T. & Takagi, Y. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc. Natl Acad. Sci. USA 90, 11312–11316. (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones, M. E., Boon, W. C., Proietto, J. & Simpson, E. R. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol. Metab. 17, 55–64 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Vermeulen, A., Rubens, R. & Verdonck, L. Testosterone secretion and metabolism in male senescence. J. Clin. Endocrinol. Metab. 34, 730–735 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. Vermeulen, A., Kaufman, J. M., Goemaere, S. & van Pottelberg, I. Estradiol in elderly men. Aging Male 5, 98–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Baulieu, E. E. Androgens and aging men. Mol. Cell Endocrinol. 198, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ho, S. M. & Roy, D. Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolateral prostates of Noble rats. Cancer Lett. 84, 155–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Prins, G. S. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression. Endocrinology 130, 3703–3714 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. McPherson, S. et al. Elevated androgens and prolactin in aromatase deficient (ArKO) mice cause enlargement but not malignancy of the prostate gland. Endocrinology 142, 2458–2467 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Rohrmann, S. et al. Serum estrogen, but not testosterone levels differ between black and white men in a nationally representative sample of Americans. J. Clin. Endocrinol. Metab. 24 April 2007 (epub ahead of print)

  33. de Jong, F. H. et al. Peripheral hormone levels in controls and patients with prostatic cancer or benign prostatic hyperplasia: results from the Dutch-Japanese case-control study. Cancer Res. 51, 3445–3450 (1991).

    CAS  PubMed  Google Scholar 

  34. Fishman, J. & Goto, J. Mechanism of estrogen biosynthesis. Participation of multiple enzyme sites in placental aromatase hydroxylations. J. Biol. Chem. 256, 4466–4471 (1981).

    CAS  PubMed  Google Scholar 

  35. Akhtar, M., Calder, M. R., Corina, D. L. & Wright, J. N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem. J. 201, 569–580 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simpson, E. R., Mahendroo, M. S., Nichols, J. E. & Bulun, S. E. Aromatase gene expression in adipose tissue: relationship to breast cancer. Int. J. Fertil. Menopausal Stud. 39, 75–83 (1994).

    PubMed  Google Scholar 

  37. Kruit, W. H., Stoter, G. & Klijn, J. G. Effect of combination therapy with aminoglutethimide and hydrocortisone on prostate-specific antigen response in metastatic prostate cancer refractory to standard endocrine therapy. Anticancer Drugs 15, 843–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ponder, B. A. et al. Response to aminoglutethimide and cortisone acetate in advanced prostatic cancer. Br. J. Cancer 50, 757–763 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rostom, A. Y. et al. Aminoglutethimide therapy for advanced carcinoma of the prostate. Br. J. Urol. 54, 552–555 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Smith, M. R. et al. Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 95, 1864–1868 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Santen, R. J. et al. Use of the aromatase inhibitor anastrozole in the treatment of patients with advanced prostate carcinoma. Cancer 92, 2095–2101 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Price, D. et al. Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo controlled, phase IIB clinical trial. J. Urol. 176, 965–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Carani, C. et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Olsen, N. J. & Kovacs, W. J. Gonadal steroids and immunity. Endocr. Rev. 17, 369–384 (1996).

    CAS  PubMed  Google Scholar 

  46. Mendelsohn, M. E. & Karas, R. H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 340, 1801–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Risbridger, G. et al. Evidence that epithelial and mesenchymal estrogen receptor-alpha mediates effects of estrogen on prostatic epithelium. Dev. Biol. 229, 432–442. (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Pylkkanen, L., Santti, R., Newbold, R. & McLachlan, J. A. Regional differences in the prostate of the neonatally estrogenized mouse. Prostate 18, 117–129 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Prins, G. in Prostate: Basic and Clinical Aspects (ed. Naz, R.) 245–263 (CRC Press, New York, 1997).

    Google Scholar 

  50. Naslund, M. J., Strandberg, J. D. & Coffey, D. S. The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J. Urol. 140, 1049–1053 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Stoker, T. E., Robinette, C. L. & Cooper, R. L. Perinatal exposure to estrogenic compounds and the subsequent effects on the prostate of the adult rat: evaluation of inflammation in the ventral and lateral lobes. Reprod. Toxicol. 13, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Bianco, J. J., Handelsman, D. J., Pedersen, J. S. & Risbridger, G. P. Direct response of the murine prostate gland and seminal vesicles to estradiol. Endocrinology 143, 4922–4933 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bianco, J. J., McPherson, S. J., Wang, H., Prins, G. S. & Risbridger, G. P. Transient neonatal estrogen exposure to estrogen deficient mice (Aromatase knockout) reduces prostate weight and induces inflammation in late life. Am. J. Pathol. 168, 1869–1878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prins, G. S. et al. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor α: studies with αERKO and βERKO mice. Cancer Res. 61, 6089–6097 (2001).

    CAS  PubMed  Google Scholar 

  55. Nickel, J. C. Prostatic inflammation in benign prostatic hyperplasia- the third component? Can. J. Urol. 1, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  56. Kramer, G. & Marberger, M. Could inflammation be a key component in the progression of benign prostatic hyperplasia? Curr. Opin. Urol. 16, 25–29 (2006).

    PubMed  Google Scholar 

  57. Gleason, P. E. et al. Platelet derived growth factor (PDGF), androgens and inflammation: possible etiologic factors in the development of prostatic hyperplasia. J. Urol. 149, 1586–1592 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palapattu, G. S. et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26, 1170–1181 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. Nelson, W. G., De Marzo, A. M., DeWeese, T. L. & Isaacs, W. B. The role of inflammation in the pathogenesis of prostate cancer. J. Urol. 172, S6–S11 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nature Rev. Cancer 7, 256–269 (2007).

    Article  CAS  Google Scholar 

  62. Ho, S. et al. Induction of atypical hyperplasia, apoptosis, and type II estrogen-binding sites in the ventral prostates of Noble rats treated with testosterone and pharmacologic doses of estradiol-17 β. Lab. Invest. 73, 356–365 (1995).

    CAS  PubMed  Google Scholar 

  63. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  64. Raghow, S., Hooshdaran, M. Z., Katiyar, S. & Steiner, M. S. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res. 62, 1370–1376 (2002).

    CAS  PubMed  Google Scholar 

  65. Cassidy, A. Potential risks and benefits of phytoestrogen-rich diets. Int. J. Vitam. Nutr. Res. 73, 120–126 (2003).

    Article  PubMed  Google Scholar 

  66. Sirtori, C. R., Arnoldi, A. & Johnson, S. K. Phytoestro-gens: end of a tale? Ann. Med. 37, 423–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Severson, R. K., Nomura, A. M., Grove, J. S. & Stemmermann, G. N. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 49, 1857–1860 (1989).

    CAS  PubMed  Google Scholar 

  68. Adlercreutz, H. et al. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am. J. Clin. Nutr. 54, 1093–1100 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Harris, H. A. Estrogen receptor-β: Recent lessons from in vivo studies. Mol. Endocrinol. 21, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weihua, Z., Warner, M. & Gustafsson, J. Estrogen receptor β in the prostate. Mol. Cell. Endocrinol. 193, 1 (2002).

    Article  PubMed  Google Scholar 

  72. Zhu, X. et al. Dynamic regulation of estrogen receptor-β expression by DNA methylation during prostate cancer development and metastasis. Am. J. Pathol. 164, 2003–2012 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng, J., Lee, E. J., Madison, L. D. & Lazennec, G. Expression of estrogen receptor beta in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis. FEBS Lett. 566, 169–172 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. Weihua, Z. et al. A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc. Natl Acad. Sci. USA 98, 6330–6335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krege, J. H. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc. Natl Acad. Sci. USA 95, 15677–15682 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dupont, S. et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 127, 4277–4291 (2000).

    CAS  PubMed  Google Scholar 

  77. Shughrue, P. J., Askew, G. R., Dellovade, T. L. & Merchenthaler, I. Estrogen-binding sites and their functional capacity in estrogen receptor double knockout mouse brain. Endocrinology 143, 1643–1650 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Imamov, O. et al. Estrogen receptor β regulates epithelial cellular differentiation in the mouse ventral prostate. Proc. Natl Acad. Sci. USA 101, 9375–9380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weihua, Z., Lathe, R., Warner, M. & Gustafsson, J. A. An endocrine pathway in the prostate, ERβ, AR, 5α-androstane-3β, 17β-diol, and CYP7B1, regulates prostate growth. Proc. Natl Acad. Sci. USA 99, 13589–13594 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Imamov, O., Lopatkin, N. A. & Gustafsson, J. A. Estrogen receptor β in prostate cancer. N. Engl. J. Med. 351, 2773–2774 (2004).

    Article  PubMed  Google Scholar 

  81. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. McPherson, S. J. et al. Essential role for estrogen receptor β in stromal-epithelial regulation of prostatic hyperplasia. Endocrinology 148, 566–574 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Thompson, T. C., Cunha, G. R., Shannon, J. M. & Chung, L. W. Androgen-induced biochemical responses in epithelium lacking androgen receptors: characterization of androgen receptors in the mesenchymal derivative of urogenital sinus. J. Steroid Biochem. 25, 627–634 (1986).

    Article  CAS  PubMed  Google Scholar 

  84. Cunha, G. R. & Donjacour, A. Stromal-epithelial interactions in normal and abnormal prostatic development. Prog. Clin. Biol. Res. 239, 251–272 (1987).

    CAS  PubMed  Google Scholar 

  85. Cunha, G. R., Young, P., Higgins, S. J. & Cooke, P. S. Neonatal seminal vesicle mesenchyme induces a new morphological and functional phenotype in the epithelia of adult ureter and ductus deferens. Development 111, 145–158 (1991).

    CAS  PubMed  Google Scholar 

  86. Matthews, J. & Gustafsson, J. A. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol. Interv. 3, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Z. et al. A variant of estrogen receptor-α, hER-α 36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc. Natl Acad. Sci. USA 103, 9063–9068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Levin, E. R. Cell localization, physiology, and nongenomic actions of estrogen receptors. J. Appl. Physiol. 91, 1860–1867 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Bjornstrom, L. & Sjoberg, M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. McPherson, R. Santen and F. Gardiner for their critical review of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail P. Risbridger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

prostate cancer

FURTHER INFORMATION

Author's homepage

Monash University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellem, S., Risbridger, G. Treating prostate cancer: a rationale for targeting local oestrogens. Nat Rev Cancer 7, 621–627 (2007). https://doi.org/10.1038/nrc2174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing