Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Connectivity Map: a new tool for biomedical research


The ultimate objective of biomedical research is to connect human diseases with the genes that underlie them and drugs that treat them. But this remains a daunting task, and even the most inspired researchers still have to resort to laborious screens of genetic or chemical libraries. What if at least some parts of this screening process could be systematized and centralized? And hits found and hypotheses generated with something resembling an internet search engine? These are the questions the Connectivity Map project set out to answer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A connectivity map.
Figure 2: A universal functional bioassay.
Figure 3: The Connectivity Map is a tool for the bench researcher.
Figure 4: The Connectivity Map web interface.


  1. 1

    Vane, J. R. & Botting, R. M. The mechanism of action of aspirin. Thromb. Res. 110, 255–258 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Black, J. Drugs from emasculated hormones: the principle of syntopic antagonism. Science 245, 486–493 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL-1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Austin, C. P. The completed human genome: implications for chemical biology. Curr. Opin. Chem. Biol. 7, 511–515 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Cornwell, P. D., De Souza, A. T. & Ulrich, R. G. Profiling of hepatic gene expression in rats treated with fibric acid analogs. Mutat. Res. 549, 131–145 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Lindsay, M. A. Target discovery. Nature Rev. Drug Discov. 2, 831–838 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nature Rev. Cancer 1, 34–45 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Reich, M. et al. GenePattern 2.0. Nature Genet. 38, 500–501 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Strausberg, R. L. & Schreiber, S. L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300, 294–295 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Tolliday, N. et al. Small molecules, big players: the National Cancer Institute's initiative for chemical genetics. Cancer Res. 66, 8935–8942 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Smith, I. E. & Dowsett, M. Aromatase inhibitors in breast cancer. N. Engl. J. Med. 348, 2431–2442 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Rogers, J. T. et al. Alzheimer's disease drug discovery targeted to the APP mRNA 5′untranslated region. J. Mol. Neurosci. 19, 77–82 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Stavrovskaya, I. G. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med. 200, 211–222 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Rothstein, J. D. et al. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Miller, T. M. & Cleveland, D. W. Treating neurodegenerative diseases with antibiotics. Science 307, 361–362 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl Acad. Sci. USA 100, 7977–7982 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Orth, A. P., Batalov, S., Perrone, M. & Chanda, S. K. The promise of genomics to identify novel therapeutic targets. Expert Opin. Ther. Targets 8, 587–596 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nature Biotechnol. 24, 805–815 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Rual, J. F. et al. Human ORFeome version 1. 1: a platform for reverse proteomics. Genome Res. 14, 2128–2135 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S. & Sabatini, D. M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods 3, 715–719 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E. & Boeke, J. D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl Acad. Sci. 93, 10315–10320 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Milstein, S. & Vidal, M. Perturbing interactions. Nature Methods 2, 412–414 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Frantz, S. Drug discovery: playing dirty. Nature 437, 942–943 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Su, A. I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA 99, 4465–4470 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Mehrabian, M. et al. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genet. 37, 1224–1233 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Ganter, B. et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. 119, 219–244 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Brazma, A. et al. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 31, 68–71 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Parkinson, H. et al. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 33, D553–D555 (2005).

    CAS  Article  Google Scholar 

  47. 47

    Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    CAS  Article  Google Scholar 

  48. 48

    Barrett, T. et al. NCBI GEO: mining millions of expression profiles-database and tools. Nucleic Acids Res. 33, D562–D566 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Rhodes, D. R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    CAS  Article  Google Scholar 

  51. 51

    Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Natsoulis, G. et al. Classification of a large microarray data set: algorithm comparison and analysis of drug signatures. Genome Res. 15, 724–736 (2005).

    CAS  Article  Google Scholar 

  54. 54

    Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36, 257–263 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Stegmaier, K. et al. Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106, 2841–2848 (2005).

    CAS  Article  Google Scholar 

  56. 56

    Peck, D. et al. A method for high-throughput gene expression signature analysis. Genome Biol. 7, R61 (2006).

    Article  Google Scholar 

  57. 57

    Burke, A., Smyth, E. & FitzGerald, G. A. in Goodman and Gilman's the pharmacological basis of therapeutics (ed. Brunton, L. L.) 671–715 (McGraw-Hill, New York, 2006).

    Google Scholar 

  58. 58

    Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    CAS  Article  Google Scholar 

  59. 59

    Reiss, T. F. et al. Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. J. Allergy Clin. Immunol. 98, 528–534 (1996).

    CAS  Article  Google Scholar 

  60. 60

    Boolell, M. et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res. 8, 47–52 (1996).

    CAS  PubMed  Google Scholar 

  61. 61

    Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Marmor, M. F. & Kessler, R. Sildenafil (Viagra) and ophthalmology. Surv. Opthamol. 44, 153–162 (1999).

    CAS  Article  Google Scholar 

  63. 63

    Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M. & Kliewer, S. A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410 (1997).

    CAS  Article  Google Scholar 

Download references


Thanks to T. Golub, the Connectivity Map team and members of the Broad Institute Cancer and Chemical Biology Programs.

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links





Connectivity Map web site


Gene Expression Atlas

Gene Expression Omnibus

GenePattern web site

Global Cancer Map

Oncomine Cancer Profiling Database

Rosetta Inpharmatics

WHO Collaborating Centre for Drug Statistics Methodology

WHO MedNet

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamb, J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7, 54–60 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing