Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Immunotoxin therapy of cancer

Abstract

Rationally designed anticancer agents that target cell-surface antigens or receptors represent a promising approach for treating cancer patients. However, antibodies that bind these targets are often, by themselves, non-cytotoxic. By attaching potent toxins we can dramatically improve the clinical utility of some anti-tumour antibodies. Here we describe the construction and clinical utility of several recombinant immunotoxins; each of which is composed of antibody Fv fragments fused to powerful bacterial toxins. Results from clinical trials indicate that recombinant immunotoxins and similar agents that are designed to combine antibody selectivity with toxin cell-killing potency will be useful additions to cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BL22.
Figure 2: Strategy used to make single-chain or disulphide-linked immunotoxins.
Figure 3: Model of a recombinant immunotoxin.
Figure 4: DAB389IL2.

Similar content being viewed by others

References

  1. FitzGerald, D. J., Kreitman, R., Wilson, W., Squires, D. & Pastan, I. Recombinant immunotoxins for treating cancer. Int. J. Med. Microbiol. 293, 577–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Frankel, A. E., Neville, D. M., Bugge, T. A., Kreitman, R. J. & Leppla, S. H. Immunotoxin therapy of hematologic malignancies. Semin. Oncol. 30, 545–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Foss, F. M., Saleh, M. N., Krueger, J. G., Nichols, J. C. & Murphy, J. R. in Clinical Applications of Immunotoxins (ed. Frankel, A. E.) 63–81 (Springer, Berlin, Germany, 1998).

    Book  Google Scholar 

  4. Uckun, F. M. & Reaman, G. H. Immunotoxins for treatment of leukemia and lymphoma. Leuk. Lymphoma 18, 195–201 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Engert, A., Sausville, E. A. & Vitetta, E. in Clinical Applications of Immunotoxins (ed. Frankel, A. E.) 13–33 (Springer, Berlin, Germany, 1998).

    Book  Google Scholar 

  6. Naglich, J. G., Metherall, J. E., Russell, D. W. & Eidels, L. Expression cloning of a diptheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, G. & London, E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry 44, 4488–4498 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Smallshaw, J. E. et al. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nature Biotechnol. 21, 387–391 (2003).

    Article  CAS  Google Scholar 

  9. Gould, B. J. et al. Phase I study of an anti-breast cancer immunotoxin by continuous infusion: Report of a targeted toxic effect not predicted by animal studies. J. Natl Cancer Inst. 81, 775–781 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Pai, L. H. et al. Clinical evaluation of intraperitoneal Pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J. Clin. Oncol. 9, 2095–2103 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Pai-Scherf, L. H. et al. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin. Cancer Res. 5, 2311–2315 (1999).

    CAS  PubMed  Google Scholar 

  12. Taniguchi, T. & Minami, Y. The IL2/IL-2 receptor system: a current overview. Cell 73, 5–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Olsen, E. et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol. 19, 376–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Duvic, M., Kuzel, T. M., Olsen, E. & Martin, A. G. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ontak). Clin. Lymphoma 2, 222–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Railan, D., Fivenson, D. P. & Wittenberg, G. Capillary leak syndrome in a patient treated with interleukin 2 fusion toxin for cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 43, 323–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Foss, F. M. et al. Biological correlates of acute hypersensitivity events with DAB(389)IL-2 (denileukin diftitox, ONTAK) in cutaneous T-cell lymphoma: decreased frequency and severity with steroid premedication. Clin. Lymphoma 1, 298–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Foss, F., Demierre, M. F. & DiVenuti, G. A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 106, 454–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Frankel, A. E. et al. A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin. Cancer Res. 9, 3555–3561 (2003).

    CAS  PubMed  Google Scholar 

  19. Dang, N. H. et al. Phase II study of denileukin diftitox for relapsed/refractory B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 22, 4095–4102 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Dannull, J. et al. Enhancement of vccine-mediated antitumor immunity in cancer patients: depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uchiyama, T. A., Broder, S. & Waldmann, T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J. Immunol. 126, 1393–1397 (1981).

    CAS  PubMed  Google Scholar 

  22. Chaudhary, V. K. et al. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339, 394–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Kreitman, R. J. et al. Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 94, 3340–3348 (1999).

    CAS  PubMed  Google Scholar 

  24. Kreitman, R. J. et al. Phase I trial of recombinant immunotoxin anti-tac(Fv)–PE38 (LMB-2) in patients with hematologic malignancies. J. Clin. Oncol. 18, 1614–1636 (2000).

    Article  Google Scholar 

  25. Onda, M., Kreitman, R. J., Vasmatzis, G., Lee, B. & Pastan, I. Reduction of the nonspecific toxicity of anti-Tac(Fv)-PE38 by mutations in the framework regions of the Fv which lower the isoelectric point. J. Immunol. 163, 6072–6077 (1999).

    CAS  PubMed  Google Scholar 

  26. Onda, M. et al. Inhibition of TNFα produced by Kupffer cells protects against the non-specific liver toxicity of immunotoxin anti-Tac(Fv)-PE38, LMB-2. J. Immunol. 165, 7150–7156 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Schnell, R. et al. Treatment of refractory Hodgkin's lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia 14, 129–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Schnell, R. et al. Clinical trials with an anti-CD25 ricin A-chain experimental and immunotoxin (RFT5–SMPT-dgA) in Hodgkin's lymphoma. Leuk. Lymphoma 30, 525–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Engert, A. et al. A phase-I study of an anti-CD25 ricin A-chain immunotoxin (RFT5–SMPT-dgA) in patients with refractory Hodgkin's lymphoma. Blood 89, 403–410 (1997).

    CAS  PubMed  Google Scholar 

  30. Schnell, R. et al. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4. dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin. Cancer Res. 8, 1779–1786. (2002).

    CAS  PubMed  Google Scholar 

  31. Borchmann, P., Schnell, R. & Engert, A. Immunotherapy of Hodgkin's lymphoma. Eur. J. Haematol. Suppl. 66, 159–165 (2005).

    Article  CAS  Google Scholar 

  32. Mansfield, E., Amlot, P., Pastan, I. & FitzGerald, D. J. Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 90, 2020–2026 (1997).

    CAS  PubMed  Google Scholar 

  33. Kreitman, R. J., Wang, Q. C., FitzGerald, D. J. P. & Pastan, I. Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by cynomolgus monkeys. Int. J. Cancer 81, 148–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kreitman, R. J. et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med. 345, 241–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kreitman, R. J. et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J. Clin. Oncol. 23, 6719–6729 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Hall, P. D., Willingham, M. C., Kreitman, R. J. & Frankel, A. E. DT388-GM-CSF, a novel fusion toxin consisting of a truncated diphtheria toxin fused to human granulocyte-macrophage colony stimulating factor, prolongs survival in a SCID model of acute myelogenous leukemia. Leukemia 13, 629–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hogge, D. E. et al. Malignant progenitors from patients with acute myelogenous leukemia are sensitive to a diphtheria toxin-granulocyte-macrophage colony-stimulating factor fusion protein. Blood 92, 589–595 (1998).

    CAS  PubMed  Google Scholar 

  38. Frankel, A. E. et al. Diphtheria toxin fused to granulocyte-macrophage colony-stimulating factor is toxic to blasts from patients with juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia but is nontoxic to normal myeloid progenitors. Blood 91, 4279–4286 (1998).

    Google Scholar 

  39. Frankel, A. E., Powell, B. L., Hall, P. D., Case, L. D. & Kreitman, R. J. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin. Cancer Res. 8, 1004–1013 (2002).

    CAS  PubMed  Google Scholar 

  40. Wescott, M. M. et al. Diphtheria toxin-murine granulocyte-macrophage colony-stimulating factor-induced hepatotoxicity is mediated by Kupffer cells. Mol. Cancer Ther. 3, 1681–1689 (2004).

    Google Scholar 

  41. Cohen, K. A. et al. Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey. Cancer Immunol. Immunother. 54, 799–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Urieto, J. O. et al. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr. Purif. 33, 123–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Pastan, I. et al. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res. 51, 3781–3787 (1991).

    CAS  PubMed  Google Scholar 

  44. Pai, L. H., Wittes, R., Setser, A., Willingham, M. C. & Pastan, I. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nature Med. 2, 350–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Kuan, C., Pai, L. H. & Pastan, I. Immunotoxins containing Pseudomonas exotoxin targeting LeY damage human endothelial cells in an antibody-specific mode: relevance to vascular leak syndrome. Clin. Cancer Res. 1, 1589–1594 (1995).

    CAS  PubMed  Google Scholar 

  46. Posey, J. A. et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin. Cancer Res. 8, 3092–3099 (2002).

    CAS  PubMed  Google Scholar 

  47. Chang, K. & Pastan, I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl Acad. Sci. USA 93, 136–140 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Argani, P. et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res. 7, 3862–3868 (2001).

    CAS  PubMed  Google Scholar 

  49. Hassan, R., Bera, T. & Pastan, I. Mesothelin: a new target for immunotherapy. Clin. Cancer Res. 10, 3937–3942 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Chowdhury, P. S., Viner, J. L., Beers, R. & Pastan, I. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc. Natl Acad. Sci. USA 95, 669–674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chowdhury, P. S. & Pastan I. Improving antibody affinity by mimicking somatic hypermutations in vitro. Nature Biotech. 17, 568–572 (1999).

    Article  CAS  Google Scholar 

  52. Kreitman, R. et al. SS1(dsFv)PE38 anti-mesothelin immunotoxin in advanced malignancies: Phase I study of continous infusion. Proc. Am. Soc. Clin. Oncol. 21, 22b (2002).

    Google Scholar 

  53. Hassan, R., Bullock, S., Kindler, H. & Pastan, I. Updated results of the phase I study of SS1(dsFv)PE38 for targeted therapy of mesothelin expressing cancers. Eur. J. Cancer 2 (Suppl.), 280a (2004).

    Google Scholar 

  54. Garland, L. et al. Phase I trial of intravenous IL-4 Pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J. Immunother. 28, 376–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Laske, D. W., Youle, R. J. & Oldfield, E. H. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nature Med. 3, 1362–1368 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Weber, F. W. et al. in Local Therapies for Glioma: Present Status and Future Developments (eds Westphal, M., Tonn, J. C. & Ram, Z.) 93–103 (Springer, Vienna, Austria, 2003).

    Book  Google Scholar 

  57. Rand, R. W. et al. Intratumoral administration of a recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high grade glioma. Clin. Cancer Res. 6, 2157–2165 (2000).

    CAS  PubMed  Google Scholar 

  58. Sampson, J. H. et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-α and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol. 65, 27–35 (2003).

    Article  PubMed  Google Scholar 

  59. Boskovitz, A. et al. Monoclonal antibodies for brain tumour treatment. Expert Opin. Biol. Ther. 4, 1453–1471 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sampson, J. H. et al. Sustained radiographic and clinical response in patient with bifrontal recurrent glioblastoma multiforme with intracerebral infusion of the recombinant targeted toxin TP-38: case study. J. Neuro-oncol. 7, 90–96 (2005).

    Article  Google Scholar 

  61. Parney, I. F. et al. Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J. Neurosurg. 102, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Nagata, S. et al. Novel anti-CD30 recombinant immunotoxins containing disulphide-stabilized Fv fragments. Clin. Cancer Res. 8, 2345–2355 (2002)

    CAS  PubMed  Google Scholar 

  63. Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J. & Pastan, I. Improved cytotoxic activity towards cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin. Cancer Res. 8, 995–1002 (2002).

    CAS  PubMed  Google Scholar 

  64. Baluna, R., Rizo, J., Gordon, B. E., Ghetie, V. & Vitetta, E. S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc. Natl Acad. Sci. USA 96, 3957–3962 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baluna, R., Coleman, E., Jones, C., Ghetie, V. & Vitetta, E. S. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp. Cell Res. 258, 417–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Tsutsimi, Y. et al. Site-specific chemical modification of recombinant immunotoxin anti-Tacc(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl Acad. Sci. USA 97, 8548–8553 (2000).

    Article  Google Scholar 

  67. Molineux, G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat. Rev. 28, S13–S16 (2002).

    Article  Google Scholar 

  68. Castelletti, D. et al. A dominant linear B-cell epitope of ricin A-chain is the target of a neutralizing antibody response in Hodgkin's lymphoma patients treated with an anti-CD25 immunotoxin. Clin. Exp. Immunol. 136, 365–372 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haggerty, H. G. et al. BR96 sFv-PE40 immunotoxin: nonclinical safety assessment. Toxicol. Pathol. 27, 87–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Damle, B., Tay, L., Comereski, C., Warner, W. & Kaul, S. Influence of immunogenicity on the pharmacokinetics of BMS-191352, a Pseudomonas exotoxin immunoconjugate, in rats and dogs. J. Pharm. Pharmacol. 52, 671–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kunwar, S. in Local Therapies for Glioma: Present Status and Future Developments (eds Westphal, M., Tonn, J. C. & Ram, Z.) 105–111 (Springer, Vienna, Austria, 2003).

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the US National Institutes of Health, the National Cancer Institute and the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Pastan.

Ethics declarations

Competing interests

D.J.F is a named co-inventor of the immunotoxin technology, and could benefit from patent royalties, but does not own stock in any related companies. I.P. has a patent for the use of genetically modified PE to make immunotoxins. R.J.K. is a named co-inventor on the US National Institutes of Health patent for BL22.

Related links

Related links

DATABASES

National Cancer Institute

paediatric acute lymphoblastic leukaemia

chronic lymphocytic leukaemia

non-Hodgkin lymphoma

Hodgkin disease

hairy-cell leukaemia

acute myeloid leukaemia

FURTHER INFORMATION

Ira Pastan's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastan, I., Hassan, R., FitzGerald, D. et al. Immunotoxin therapy of cancer. Nat Rev Cancer 6, 559–565 (2006). https://doi.org/10.1038/nrc1891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing