Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolving concepts in the pathogenesis of hairy-cell leukaemia

Key Points

  • Hairy-cell leukaemia (HCL) is an indolent mature B-cell tumour of unknown genetic pathogenesis. Neoplastic cells have hair-like surface projections, infiltrate the bone marrow, the spleen and the liver, and circulate in low numbers in peripheral blood. Unlike other B-cell malignancies, HCL does not consistently involve the lymph nodes, does not bear chromosomal translocations and is highly sensitive to treatment with interferon-α (IFNα) and purine analogues.

  • The normal B-cell counterpart of HCL is still debated. However, its genome-wide expression signature and its mutated immunoglobulin genes suggest that HCL is derived from memory B cells, possibly from the splenic marginal zone (SMZ).

  • Clonal expansion is largely the result of increased cell survival rather than proliferation. The growth properties of HCL are regulated by intracellular signalling pathways (including mitogen activated protein kinase (MAPK) cascades) and autocrine loops (including tumour necrosis factor-α (TNFα)–TNF receptors (TNFRs)), with the microenvironment providing important pro-survival signals.

  • HCL cells home to, and remain in, blood-related compartments (bone marrow, spleen and hepatic sinusoids) through their activated integrin receptors and, probably, through the overexpression of matrix-metalloproteinase inhibitors. Conversely, chemokine receptors and adhesion proteins that are crucial for homing to the lymph nodes are downregulated.

  • Another unusual feature of HCL is bone-marrow fibrosis. Tumour cells secrete the fibrogenic cytokines basic fibroblast growth factor (bFGF) and tumour growth factor β1 (TGFβ1), which trigger the production of a fibronectin matrix by leukaemic cells and type III collagen fibres by fibroblasts, respectively.

  • 'Hairy' morphology might increase the cell surface area available for interaction with the microenvironment. Rho GTPases shape the membrane and the actin-rich cytoskeleton of HCL cells, probably with a contribution from other proteins such as pp52, growth arrest specific 7 (GAS7) and EPB4.1L2.

  • HCL-like disorders (HCL-variant (HCLv) and splenic lymphoma with villous lymphocytes (SLVL)) also present with splenomegaly, circulating 'hairy' cells and infrequent lymph node involvement, but do not respond to IFNα and purine analogues. Annexin-1 is a highly sensitive and specific HCL marker, helping in this crucial diagnostic step.

  • In the future, elucidation of the key genetic lesions and molecular factors responsible for HCL development should lead to new, specific and less immunnosuppressive drugs.

Abstract

Hairy-cell leukaemia (HCL) has long been recognized as distinct from other chronic B-cell malignancies, but several questions remain unanswered. What is the HCL cell of origin? Why does HCL lack the hallmarks of most mature B-cell tumours (for example, chromosomal translocations and consistent lymph node involvement) and show unique features like 'hairy' morphology and bone-marrow fibrosis? Gene-expression profiling and other studies have recently provided new insights into HCL biology and have the potential to affect clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of hairy cells.
Figure 2: Signalling pathways involved in hairy-cell leukaemia (HCL) growth.
Figure 3: Hairy-cell leukaemia (HCL) homing and dissemination properties.
Figure 4: 'Hairy' morphology: molecular mediators and their relationship with hairy-cell survival.

Similar content being viewed by others

References

  1. Schrek, R. & Donnelly, W. J. 'Hairy' cells in blood in lymphoreticular neoplastic disease and 'flagellated' cells of normal lymph nodes. Blood 27, 199–211 (1966).

    CAS  PubMed  Google Scholar 

  2. Foucar, K. & Catovsky, D. in Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues: World Health Organization Classification of Tumours (eds Jaffe, E. S., Harris, N. L., Stein, H. & Vardiman, J. W.) 138–141 (IARC Press, Lyon, 2001).

    Google Scholar 

  3. Korsmeyer, S. J. et al. Rearrangement and expression of immunoglobulin genes and expression of Tac antigen in hairy cell leukemia. Proc. Natl Acad. Sci. USA 80, 4522–4526 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Burthem J., Zuzel M. & Cawley J. C. What is the nature of the hairy cell and why should we be interested? Br. J. Haematol. 97, 511–514 (1997).

    CAS  PubMed  Google Scholar 

  5. Zakarija, A., Peterson, L. C. & Tallman, M. in Hematology:Basic principles and practice (eds Hoffman, R. et al.) 1455–1465 (Elsevier, Churchill Livingstone, 2005).

    Google Scholar 

  6. Matutes, E., Wotherspoon, A. & Catovsky, D. The variant form of hairy-cell leukaemia. Best Pract. Res. Clin. Haematol. 16, 41–56 (2003).

    CAS  PubMed  Google Scholar 

  7. Isaacson, P. G. et al. in Tumours of Haematopoietic and Lymphoid Tissues (eds Jaffe, E. S., Stein, H. & Vardiman, W. J.) 138–141 (IARC press, Lyon, 2001).

    Google Scholar 

  8. Carson, D. A. & Leoni, L. M. Hairy-cell leukaemia as a model for drug development. Best Pract. Res. Clin. Haematol. 16, 83–89 (2003).

    CAS  PubMed  Google Scholar 

  9. Anderson, K. C. et al. Hairy cell leukemia: a tumor of pre-plasma cells. Blood 65, 620–629 (1985).

    CAS  PubMed  Google Scholar 

  10. van den Oord, J. J., de Wolf-Peeters, C. & Desmet, V. J. Hairy cell leukemia: a B-lymphocytic disorder derived from splenic marginal zone lymphocytes? Blut 50, 191–194 (1985).

    CAS  PubMed  Google Scholar 

  11. Burke, J. S. & Sheibani, K. Hairy cells and monocytoid B lymphocytes: are they related? Leukemia 1, 298–300 (1987).

    CAS  PubMed  Google Scholar 

  12. Posnett, D. N., Wang, C. Y., Chiorazzi, N., Crow, M. K. & Kunkel, H. G. An antigen characteristic of hairy cell leukemia cells is expressed on certain activated B cells. J. Immunol. 133, 1635–1640 (1984).

    CAS  PubMed  Google Scholar 

  13. Visser, L., Shaw, A., Slupsky, J., Vos, H. & Poppema, S. Monoclonal antibodies reactive with hairy cell leukemia. Blood 74, 320–325 (1989).

    CAS  PubMed  Google Scholar 

  14. Golomb, H. M., Davis, S., Wilson, C. & Vardiman, J. Surface immunoglobulins on hairy cells of 55 patients with hairy cell leukemia. Am. J. Hematol. 12, 397–401 (1982).

    CAS  PubMed  Google Scholar 

  15. Maloum, K. et al. VH gene expression in hairy cell leukaemia. Br. J. Haematol. 101, 171–178 (1998).

    CAS  PubMed  Google Scholar 

  16. Forconi, F. et al. Hairy cell leukemia: at the crossroad of somatic mutation and isotype switch. Blood 104, 3312–3317 (2004).

    CAS  PubMed  Google Scholar 

  17. Vanhentenrijk, V., Tierens, A., Wlodarska, I., Verhoef, G. & Wolf-Peeters C. D. V(H) gene analysis of hairy cell leukemia reveals a homogeneous mutation status and suggests its marginal zone B-cell origin. Leukemia 18, 1729–1732 (2004).

    CAS  PubMed  Google Scholar 

  18. Thorselius M. et al. Heterogeneous somatic hypermutation status confounds the cell of origin in hairy cell leukemia. Leuk. Res. 29, 153–158 (2005).

    CAS  PubMed  Google Scholar 

  19. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  20. Forconi F. et al. Tumor cells of hairy cell leukemia express multiple clonally related immunoglobulin isotypes via RNA splicing. Blood 98, 1174–1181 (2001). References 16 and 20 describe the co-expression of multiple Ig isotypes in single HCL cells, a feature that has not been observed in any normal B-cell subset or in any other B-cell tumour and that might have important histogenetic implications.

    CAS  PubMed  Google Scholar 

  21. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    CAS  PubMed  Google Scholar 

  22. Matsumoto, M. et al. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382, 462–466 (1996).

    CAS  PubMed  Google Scholar 

  23. Weller, S. et al. CD40–CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl Acad. Sci. USA 98, 1166–1170 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Basso K. et al. Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J. Exp. Med. 199, 59–68 (2004). Gives a comprehensive view of the molecular pathogenesis of HCL using gene-expression profiling.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    CAS  PubMed  Google Scholar 

  26. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Forconi, F., Raspadori, D., Lenoci, M. & Lauria F. Absence of surface CD27 distinguishes hairy cell leukemia from other leukemic B-cell malignancies. Haematologica 90, 266–268 (2005).

    PubMed  Google Scholar 

  28. Ehrhardt, G. R. et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med. 202, 783–791 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Forconi, F., Sahota, S. S., Lauria, F. & Stevenson, F. K. Revisiting the definition of somatic mutational status in B-cell tumors: does 98% homology mean that a V(H)-gene is unmutated? Leukemia 18, 882–883 (2004).

    CAS  PubMed  Google Scholar 

  30. Klein, U., Rajewsky, K. & Kuppers R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tangye, S. G., Liu, Y. J., Aversa, G., Phillips, J. H. & de Vries J. E. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188, 1691–1703 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    CAS  PubMed  Google Scholar 

  33. Cariappa, A. et al. Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes. Immunity 23, 397–407 (2005).

    CAS  PubMed  Google Scholar 

  34. Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med. 182, 559–566 (1995).

    CAS  PubMed  Google Scholar 

  35. Vanhentenrijk, V., De Wolf-Peeters, C. & Wlodarska, I. Comparative expressed sequence hybridization studies of hairy cell leukemia show uniform expression profile and imprint of spleen signature. Blood 104, 250–255 (2004). Found imprints in HCL of a genome-wide splenic-expression signature reflecting spleen-specific components (including the marginal zone) with potential histogenetic significance.

    CAS  PubMed  Google Scholar 

  36. van der Vuurst de Vries, A. & Logtenberg, T. Dissecting the human peripheral B-cell compartment with phage display-derived antibodies. Immunology 98, 55–62 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Der Vuurst De Vries, A. R. & Logtenberg, T. A phage antibody identifying an 80--kDa membrane glycoprotein exclusively expressed on a subpopulation of activated B cells and hairy cell leukemia B cells. Eur. J. Immunol. 29, 3898–3907 (1999).

    CAS  PubMed  Google Scholar 

  38. Won, W. J. & Kearney, J. F. CD9 is a unique marker for marginal zone B cells, B1 cells, and plasma cells in mice. J. Immunol. 168, 5605–5611 (2002).

    CAS  PubMed  Google Scholar 

  39. Kluin-Nelemans, H. C. et al. Hairy cell leukemia preferentially expresses the IgG3-subclass. Blood 75, 972–975 (1990).

    CAS  PubMed  Google Scholar 

  40. Renshaw, B. R. et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180, 1889–1900 (1994).

    CAS  PubMed  Google Scholar 

  41. Zaja, F. et al. BCL-2 immunohistochemical evaluation in B-cell chronic lymphocytic leukemia and hairy cell leukemia before treatment with fludarabine and 2-chloro-deoxy-adenosine. Leuk. Lymphoma 28, 567–572 (1998).

    CAS  PubMed  Google Scholar 

  42. Bosch, F. et al. Increased expression of the PRAD-1/CCND1 gene in hairy cell leukaemia. Br. J. Haematol. 91, 1025–1030 (1995).

    CAS  PubMed  Google Scholar 

  43. Fernandez, V., Hartmann, E., Ott, G., Campo, E. & Rosenwald, A. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J. Clin. Oncol. 23, 6364–6369 (2005).

    CAS  PubMed  Google Scholar 

  44. Bergsagel, P. L. & Kuehl, W. M. Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 23, 6333–6338 (2005).

    CAS  PubMed  Google Scholar 

  45. Chilosi, M. et al. Low expression of p27 and low proliferation index do not correlate in hairy cell leukaemia. Br. J. Haematol. 111, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  46. Sanchez-Beato, M. et al. Cyclin-dependent kinase inhibitor p27KIP1 in lymphoid tissue: p27KIP1 expression is inversely proportional to the proliferative index. Am. J. Pathol. 151, 151–160 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Quintanilla-Martinez, L. et al. Mantle cell lymphomas lack expression of p27Kip1, a cyclin-dependent kinase inhibitor. Am. J. Pathol. 153, 175–182 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679–689 (1997).

    CAS  PubMed  Google Scholar 

  49. Liang, J. & Slingerland, J. M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339–345 (2003).

    CAS  PubMed  Google Scholar 

  50. Jonsson, M., Engstrom, M. & Jonsson, J. I. FLT3 ligand regulates apoptosis through AKT-dependent inactivation of transcription factor FoxO3. Biochem. Biophys. Res. Commun. 318, 899–903 (2004).

    PubMed  Google Scholar 

  51. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    CAS  PubMed  Google Scholar 

  52. Kamiguti, A. S. et al. Regulation of hairy-cell survival through constitutive activation of mitogen-activated protein kinase pathways. Oncogene 22, 2272–2284 (2003).

    CAS  PubMed  Google Scholar 

  53. Nicolaou, F. et al. CD11c gene expression in hairy cell leukemia is dependent upon activation of the proto-oncogenes ras and junD. Blood 101, 4033–4041 (2003). References 52 and 53 identified the MAP kinase pathways as crucial regulators of HCL cell survival (ref. 52 ), as well as of expression of the HCL marker CD11c (ref. 53).

    CAS  PubMed  Google Scholar 

  54. Srinivasa, S. P. & Doshi, P. D. Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia 16, 244–253 (2002).

    CAS  PubMed  Google Scholar 

  55. Zhang, S., Mantel, C. & Broxmeyer, H. E. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J. Leukoc. Biol. 65, 372–380 (1999).

    CAS  PubMed  Google Scholar 

  56. Delrieu, I. The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 468, 6–10 (2000).

    CAS  PubMed  Google Scholar 

  57. Gruber, G., Schwarzmeier, J. D., Shehata, M., Hilgarth, M. & Berger, R. Basic fibroblast growth factor is expressed by CD19/CD11c-positive cells in hairy cell leukemia. Blood 94, 1077–1085 (1999).

    CAS  PubMed  Google Scholar 

  58. Tashiro, E. et al. Overexpression of cyclin D1 contributes to malignancy by up-regulation of fibroblast growth factor receptor 1 via the pRB/E2F pathway. Cancer Res. 63, 424–431 (2003).

    CAS  PubMed  Google Scholar 

  59. Lentzsch, S. et al. PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 18, 1883–1890 (2004).

    CAS  PubMed  Google Scholar 

  60. Gallagher, J. T. Heparan sulphates as membrane receptors for the fibroblast growth factors. Eur. J. Clin. Chem. Clin. Biochem. 32, 239–247 (1994).

    CAS  PubMed  Google Scholar 

  61. Kirsch, T., Koyama, E., Liu, M., Golub, E. E. & Pacifici M. Syndecan-3 is a selective regulator of chondrocyte proliferation. J. Biol. Chem. 277, 42171–42177 (2002).

    CAS  PubMed  Google Scholar 

  62. Baker, P. K., et al. Response of hairy cells to IFN-alpha involves induction of apoptosis through autocrine TNF-alpha and protection by adhesion. Blood 100, 647–653 (2002). Clarifies the biological and molecular basis of HCL sensitivity to IFNα, and its relationship to the extracellular matrix.

    CAS  PubMed  Google Scholar 

  63. Cordingley, F. T. et al. Tumour necrosis factor as an autocrine tumour growth factor for chronic B-cell malignancies. Lancet 1, 969–971 (1988).

    CAS  PubMed  Google Scholar 

  64. Vincent, A. M., Burthem, J., Brew, R. & Cawley, J. C. Endothelial interactions of hairy cells: the importance of alpha 4 beta 1 in the unusual tissue distribution of the disorder. Blood 88, 3945–3952 (1996).

    CAS  PubMed  Google Scholar 

  65. Burthem, J., Baker, P. K., Hunt, J. A. & Cawley, J. C. Hairy cell interactions with extracellular matrix: expression of specific integrin receptors and their role in the cell's response to specific adhesive proteins. Blood 84, 873–882 (1994). References 64 and 65 show the importance of specific integrin receptors in determining the adhesion and homing properties of HCL cells.

    CAS  PubMed  Google Scholar 

  66. Nanba, K., Soban, E. J., Bowling, M. C. & Berard, C. W. Splenic pseudosinuses and hepatic angiomatous lesions. Distinctive features of hairy cell leukemia. Am. J. Clin. Pathol. 67, 415–426 (1977).

    CAS  PubMed  Google Scholar 

  67. Jiang, Y., Goldberg, I. D. & Shi, Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21, 2245–2252 (2002).

    CAS  PubMed  Google Scholar 

  68. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000).

    CAS  PubMed  Google Scholar 

  70. Csanaky, G., Matutes, E., Vass, J. A., Morilla, R. & Catovsky, D. Adhesion receptors on peripheral blood leukemic B cells. A comparative study on B cell chronic lymphocytic leukemia and related lymphoma/leukemias. Leukemia 11, 408–415 (1997).

    CAS  PubMed  Google Scholar 

  71. Lasky, L. A. et al. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 56, 1045–1055 (1989).

    CAS  PubMed  Google Scholar 

  72. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    CAS  PubMed  Google Scholar 

  73. Durig, J., Schmucker, U. & Duhrsen, U. Differential expression of chemokine receptors in B cell malignancies. Leukemia 15, 752–756 (2001).

    CAS  PubMed  Google Scholar 

  74. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    CAS  PubMed  Google Scholar 

  75. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    CAS  PubMed  Google Scholar 

  76. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. Embo J. 18, 501–511 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Arihiro, K., Kaneko, M., Fujii, S. & Inai, K. Loss of CD9 with Expression of CD31 and VEGF in Breast Carcinoma, as Predictive Factors of Lymph Node Metastasis. Breast Cancer 5, 131–138 (1998).

    CAS  PubMed  Google Scholar 

  78. Barreiro, O. et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105, 2852–2861 (2005).

    CAS  PubMed  Google Scholar 

  79. Caligaris-Cappio, F. et al. Cytoskeleton organization is aberrantly rearranged in the cells of B chronic lymphocytic leukemia and hairy cell leukemia. Blood 67, 233–239 (1986).

    CAS  PubMed  Google Scholar 

  80. Jongstra-Bilen, J., Janmey, P. A., Hartwig, J. H., Galea, S. & Jongstra, J. The lymphocyte-specific protein LSP1 binds to F-actin and to the cytoskeleton through its COOH-terminal basic domain. J. Cell Biol. 118, 1443–1453 (1992).

    CAS  PubMed  Google Scholar 

  81. Miyoshi, E. K. et al. Aberrant expression and localization of the cytoskeleton-binding pp52 (LSP1) protein in hairy cell leukemia. Leuk. Res. 25, 57–67 (2001).

    CAS  PubMed  Google Scholar 

  82. Howard, T. H., Hartwig, J. & Cunningham, C. Lymphocyte-specific protein 1 expression in eukaryotic cells reproduces the morphologic and motile abnormality of NAD 47/89 neutrophils. Blood 91, 4786–4795 (1998).

    CAS  PubMed  Google Scholar 

  83. Harvey, W. et al. Characterization of a new cell line (ESKOL) resembling hairy-cell leukemia: a model for oncogene regulation and late B-cell differentiation. Leuk. Res. 15, 733–744 (1991).

    CAS  PubMed  Google Scholar 

  84. Harrison, R. E., Sikorski, B. A. & Jongstra J. Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton. J. Cell Sci. 117, 2151–2157 (2004).

    CAS  PubMed  Google Scholar 

  85. Zhang, X. et al. Constitutively activated Rho guanosine triphosphatases regulate the growth and morphology of hairy cell leukemia cells. Int. J. Hematol. 77, 263–273 (2003).

    CAS  PubMed  Google Scholar 

  86. Chaigne-Delalande, B. et al. RhoGTPases and p53 are involved in the morphological appearance and Interferon-alpha response of hairy cells. Am. J. Pathol. 168, 562–573 (2006). Elucidates the important role of CDC42 and RAC1 in the 'hairy' phenotype of leukaemic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    CAS  PubMed  Google Scholar 

  88. Zhang, B., Zhang, Y. & Shacter, E. Rac1 inhibits apoptosis in human lymphoma cells by stimulating Bad phosphorylation on Ser-75. Mol. Cell. Biol. 24, 6205–6214 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ju, Y. T. et al. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc. Natl Acad. Sci. USA 95, 11423–11428 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chao, C. C. et al. Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells. J. Neurosci. Res. 74, 248–254 (2003).

    CAS  PubMed  Google Scholar 

  91. She, B. R., Liou, G. G. & Lin-Chao, S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp. Cell. Res. 273, 34–44 (2002).

    CAS  PubMed  Google Scholar 

  92. Schmidt, C., Kunemund, V., Wintergerst, E. S., Schmitz, B. & Schachner M. CD9 of mouse brain is implicated in neurite outgrowth and cell migration in vitro and is associated with the alpha 6/beta 1 integrin and the neural adhesion molecule L1. J. Neurosci. Res. 43, 12–31 (1996).

    CAS  PubMed  Google Scholar 

  93. Cook, G. A. et al. Identification of CD9 extracellular domains important in regulation of CHO cell adhesion to fibronectin and fibronectin pericellular matrix assembly. Blood 100, 4502–4511 (2002).

    CAS  PubMed  Google Scholar 

  94. Cook, G. A., Wilkinson, D. A., Crossno, J. T. Jr., Raghow, R. & Jennings, L. K. The tetraspanin CD9 influences the adhesion, spreading, and pericellular fibronectin matrix assembly of Chinese hamster ovary cells on human plasma fibronectin. Exp. Cell. Res. 251, 356–371 (1999).

    CAS  PubMed  Google Scholar 

  95. Parra, M. et al. Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49, 298–306 (1998).

    CAS  PubMed  Google Scholar 

  96. Discher, D. E. et al. Mechanochemistry of protein 4. 1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J. Cell. Biol. 130, 897–907 (1995).

    CAS  PubMed  Google Scholar 

  97. Kontrogianni-Konstantopoulos, A., Frye, C. S., Benz, E. J. Jr. & Huang, S. C. The prototypical 4. 1R-10-kDa domain and the 4. 1g-10-kDa paralog mediate fodrin-actin complex formation. J. Biol. Chem. 276, 20679–20687 (2001).

    CAS  PubMed  Google Scholar 

  98. Rosner, M. C. & Golomb, H. M. Phagocytic capacity of hairy cells from seventeen patients. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 40, 327–337 (1982).

    CAS  PubMed  Google Scholar 

  99. Yona, S., Buckingham, J. C., Perretti, M. & Flower, R. J. Stimulus-specific defect in the phagocytic pathways of annexin 1 null macrophages. Br. J. Pharmacol. 142, 890–898 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kusumawati, A. et al. Early events and implication of F-actin and annexin I associated structures in the phagocytic uptake of Brucella suis by the J-774A. 1 murine cell line and human monocytes. Microb. Pathog. 28, 343–352 (2000).

    CAS  PubMed  Google Scholar 

  101. Yam, L. T., Janckila, A. J., Li, C. Y. & Lam, W. K. Cytochemistry of tartrate-resistant acid phosphatase: 15 years' experience. Leukemia 1, 285–288 (1987).

    CAS  PubMed  Google Scholar 

  102. Till, K. J., Lopez, A., Slupsky, J. & Cawley, J. C. C-fms protein expression by B-cells, with particular reference to the hairy cells of hairy-cell leukaemia. Br. J. Haematol. 83, 223–231 (1993).

    CAS  PubMed  Google Scholar 

  103. Schwarting, R., Stein, H. & Wang, C. Y. The monoclonal antibodies alpha S-HCL 1 (alpha Leu-14) and alpha S-HCL 3 (alpha Leu-M5) allow the diagnosis of hairy cell leukemia. Blood 65, 974–983 (1985).

    CAS  PubMed  Google Scholar 

  104. Falini, B. et al. PG-M1: a new monoclonal antibody directed against a fixative-resistant epitope on the macrophage-restricted form of the CD68 molecule. Am. J. Pathol 142, 1359–1372 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mahoney, J. A., Ntolosi, B., DaSilva, R. P., Gordon, S. & McKnight, A. J. Cloning and characterization of CPVL, a novel serine carBoxypeptidase, from human macrophages. Genomics 72, 243–251 (2001).

    CAS  PubMed  Google Scholar 

  106. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    CAS  PubMed  Google Scholar 

  107. Cao, S., Liu, J., Song, L. & Ma, X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 174, 3484–3492 (2005).

    CAS  PubMed  Google Scholar 

  108. Hegde, S. P., Zhao, J., Ashmun, R. A. & Shapiro, L. H. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94, 1578–1589 (1999).

    CAS  PubMed  Google Scholar 

  109. Harris, N. L. et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392 (1994).

    CAS  PubMed  Google Scholar 

  110. Hounieu, H. et al. Hairy cell leukemia. Diagnosis of bone marrow involvement in paraffin-embedded sections with monoclonal antibody DBA. 44. Am. J. Clin. Pathol. 98, 26–33 (1992).

    CAS  PubMed  Google Scholar 

  111. Falini, B. et al. Selection of a panel of monoclonal antibodies for monitoring residual disease in peripheral blood and bone marrow of interferon-treated hairy cell leukaemia patients. Br. J. Haematol. 76, 460–468 (1990).

    CAS  PubMed  Google Scholar 

  112. Hermine, O. et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347, 89–94 (2002).

    CAS  PubMed  Google Scholar 

  113. Del Giudice, I. et al. The diagnostic value of CD123 in B-cell disorders with hairy or villous lymphocytes. Haematologica 89, 303–308 (2004).

    PubMed  Google Scholar 

  114. Matutes, E. et al. The immunophenotype of hairy cell leukemia (HCL). Proposal for a scoring system to distinguish HCL from B-cell disorders with hairy or villous lymphocytes. Leuk. Lymphoma 14 (Suppl. 1), 57–61 (1994).

    PubMed  Google Scholar 

  115. Falini, B. et al. Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1). Lancet 363, 1869–1870 (2004). Describes annexin-1 as the diagnostic marker with the highest sensitiviy and specificity for HCL.

    CAS  PubMed  Google Scholar 

  116. Troen, G. et al. Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. J. Mol. Diagn. 6, 297–307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Thieblemont, C. et al. Small lymphocytic lymphoma, marginal zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis. Blood 103, 2727–2737 (2004).

    CAS  PubMed  Google Scholar 

  118. Ruiz-Ballesteros, E., et al. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood 106, 1831–1838 (2005).

    CAS  PubMed  Google Scholar 

  119. Morton, L. M. et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107, 265–276 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Clavel, J. & Flandrin, G. in Hairy Cell Leukemia (eds Tallman, M. & Polliack, A.) 65–72 [Harwood, The Netherlands, 2000).

    Google Scholar 

  121. Sambani, C. et al. Clonal chromosome rearrangements in hairy cell leukemia: personal experience and review of literature. Cancer Genet. Cytogenet. 129, 138–144 (2001).

    CAS  PubMed  Google Scholar 

  122. Andersen, C. L. et al. A narrow deletion of 7q is common to HCL, and SMZL, but not CLL. Eur. J. Haematol. 72, 390–402 (2004).

    CAS  PubMed  Google Scholar 

  123. Kuppers, R., Klein, U., Hansmann, M. L. & Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 341, 1520–1529 (1999).

    CAS  PubMed  Google Scholar 

  124. Esser, C. & Radbruch, A. Immunoglobulin class switching: molecular and cellular analysis. Annu. Rev. Immunol. 8, 717–735 (1990).

    CAS  PubMed  Google Scholar 

  125. Shaffer, A. L., Rosenwald, A. & Staudt, L. M. Lymphoid malignancies: the dark side of B-cell differentiation. Nature Rev. Immunol. 2, 920–932 (2002).

    CAS  Google Scholar 

  126. Burthem, J. & Cawley, J. C. The bone marrow fibrosis of hairy-cell leukemia is caused by the synthesis and assembly of a fibronectin matrix by the hairy cells. Blood 83, 497–504 (1994).

    CAS  PubMed  Google Scholar 

  127. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002).

    PubMed  Google Scholar 

  128. Aziz, K. A., Till, K. J., Zuzel, M. & Cawley, J. C. Involvement of CD44-hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood 96, 3161–3167 (2000).

    CAS  PubMed  Google Scholar 

  129. Aziz, K. A. et al. The role of autocrine FGF-2 in the distinctive bone marrow fibrosis of hairy-cell leukaemia (HCL). Blood 102, 1051–1056 (2003).

    CAS  PubMed  Google Scholar 

  130. Munoz, L. et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86, 1261–1269 (2001).

    CAS  PubMed  Google Scholar 

  131. Lisovsky, M. et al. Flt3-ligand production by human bone marrow stromal cells. Leukemia 10, 1012–1018 (1996).

    CAS  PubMed  Google Scholar 

  132. Shibayama, H. et al. Interleukin-3 and Flt3-ligand induce adhesion of Baf3/Flt3 precursor B-lymphoid cells to fibronectin via activation of VLA-4 and VLA-5. Cell Immunol. 187, 27–33 (1998).

    CAS  PubMed  Google Scholar 

  133. Shehata, M. et al. TGF-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J. Clin. Invest. 113, 676–685 (2004). References 126, 128, 129 and 133 elucidate the molecular pathogenesis of bone-marrow fibrosis in HCL.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Phillips, A. O., Topley, N., Morrisey, K., Williams, J. D. & Steadman, R. Basic fibroblast growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Lab. Invest. 76, 591–600 (1997).

    CAS  PubMed  Google Scholar 

  135. Falcone, D. J., McCaffrey, T. A., Haimovitz-Friedman, A. & Garcia M. Transforming growth factor-beta 1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. J. Cell. Physiol. 155, 595–605 (1993).

    CAS  PubMed  Google Scholar 

  136. Flaumenhaft, R., Abe, M., Mignatti, P. & Rifkin, D. B. Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation of plasminogen activator activity. J. Cell. Biol. 118, 901–909 (1992).

    CAS  PubMed  Google Scholar 

  137. Paramithiotis, E. & Cooper, M. D. Memory B lymphocytes migrate to bone marrow in humans. Proc. Natl Acad. Sci. USA 94, 208–212 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to B. Falini. E. Tiacci was supported by a fellowship from L. Benedetti. We thank R. Küppers for helpful discussions and comments and G. Boyd for assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico Tiacci or Brunangelo Falini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Pancytopaenia

A reduction in the number of all three blood-cell lineages; that is, red cells, white cells and platelets. In HCL, this is usually the result of bone-marrow failure (caused by leukaemic infiltration) combined with increased blood-cell destruction by the enlarged spleen (hypersplenism).

Splenomegaly

The enlargement of the spleen. It can be measured by physical examination and/or other procedures, such as ultrasound or computer tomography (CT)-scans.

Immunoglobulin

The Ig, or antibody, is the main component of the Bcell receptor, which is expressed by all B cells. An Ig consists of variable (V) regions, which interact with the antigen, and a constant (C) region, which mediates the effector function of the Ig.

Splenic marginal zone

An area rich in B cells that lies between the lymphoid follicle and the red pulp in the spleen, and that is not usually observed in lymph nodes. Marginal zone B-cells include post-GC memory B cells, and B cells that are implicated in Tcell independent antigenic responses.

Comparative expressed sequence hybridization

A recently introduced technique that identifies chromosomal regions corresponding to a differential gene expression. This technique is analogous to comparative genomic hybridization that detects genomic imbalances.

Spleen structure

There are two main compartments in the splenic parenchyma (called pulp): the red pulp (made up of splenic sinusoids and cords) and the white pulp (made up of small round structures of lymphoid tissue).

Hepatic sinusoids

Small vascular channels where blood from the portal vein and hepatic artery mixes together. They are lined with highly-fenestrated (full of holes) endothelium and bound around the circumference by hepatocytes. Specialized phagocytic macrophages (Kpfer's cells) are associated with sinusoids.

Splenic sinusoids

Splenic sinusoids are large, irregular, thin-walled blood vessels that are interposed between sheets and strands of reticular connective tissue, the so-called splenic cords (or Billroth's cords). They are the main constituents of the splenic red pulp.

Splenic pseudosinuses

HCL-associated lesions consisting of prominent distended spaces resembling dilated sinuses that are lined by HCL cells and filled with erythocytes.

Hepatic angiomatous lesions

HCL-associated lesions like splenic pseudosinuses that have a hemangioma-like appearance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiacci, E., Liso, A., Piris, M. et al. Evolving concepts in the pathogenesis of hairy-cell leukaemia. Nat Rev Cancer 6, 437–448 (2006). https://doi.org/10.1038/nrc1888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing