Modelling cancer in human skin tissue


The capacity to induce neoplasia in human tissue in the laboratory has recently provided a new platform for cancer research. Malignant conversion can be achieved in vivo by expressing genes of interest in human tissue that has been regenerated on immune-deficient mice. Induction of cancer in regenerated human skin recapitulates the three-dimensional architecture, tissue polarity, basement membrane structure, extracellular matrix, oncogene signalling and therapeutic target proteins found in intact human skin in vivo. Human-tissue cancer models therefore provide an opportunity to elucidate fundamental cancer mechanisms, to assess the oncogenic potency of mutations associated with specific human cancers and to develop new cancer therapies.

Key Points

  • Malignant conversion of human tissue can be achieved rapidly in a three-dimensionally faithful human tissue context that contains primary human cells, epithelial basement-membrane zone and extracellular matrix by using high-efficiency gene transfer and regeneration of human skin on immune-deficient mice.

  • Human skin tissue can be converted directly into the three most common human skin cancers by introducing as few as one, two or three specific, defined genetic elements that are implicated in the development of these tumours.

  • Malignant conversion to basal cell carcinoma can be achieved with only one genetic alteration in human skin — overexpression of active sonic hedgehog (SHH).

  • Lethal squamous-cell carcinoma can be induced in regenerated human skin through the expression of oncogenic HRAS and only one other genetic element that facilitates escape from G1 cell-cycle arrest, including cyclin-dependent kinase 4 (CDK4) or the nuclear factor-κB inhibitor, IκBα.

  • Induction of human melanocytic neoplasia that is indistinguishable from locally invasive malignant melanoma results from expression of oncogenic NRAS and the catalytic subunit of human telomerase reverse transcriptase (TERT) in combination with either CDK4 or dominant-negative p53.

  • Human-tissue cancer models indicate that genomic catastrophe and memory-based inflammatory immune responses are not required for epithelial carcinogenesis. These models also indicate that traditional in vitro measures of neoplastic transformation, such as immortalization and anchorage-independent growth on soft agar, might not be reliable surrogate measures of human tissue tumorigenicity in vivo.

  • The oncogenic potency of specific cancer-associated mutants such as BRAFV600E, the mutant that is most commonly found in malignant melanoma, can be directly tested in human tissue.

  • Human-tissue cancer models might facilitate the validation of therapeutic interventions against human protein targets in a native human tissue environment. An example of this is the identification of type VII collagen blockade as a strategy to inhibit neoplastic invasion across the cutaneous basement-membrane zone.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Architectural comparison of human and mouse skin.
Figure 2: Diagram of the experimental approach for generating genetically defined human tissue cancers using skin as a model.
Figure 3: Selected protein networks that are altered in cutaneous neoplasia.
Figure 4: Histological features of the three most common types of skin cancer: BCC, SCC and malignant melanoma.


  1. 1

    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

  2. 2

    Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

  3. 3

    Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

  4. 4

    Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005).

  5. 5

    Hahn, W. C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999). Transformation of primary human cells was achieved using endogenous human and viral oncogenes, with malignancy confirmed by subcutaneous injection.

  6. 6

    Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

  7. 7

    Alam, M. & Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 344, 975–983 (2001).

  8. 8

    Miller, D. L. & Weinstock, M. A. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994).

  9. 9

    Diepgen, T. L. & Mahler, V. The epidemiology of skin cancer. Br. J. Dermatol. 146 (Suppl.), 1–6 (2002).

  10. 10

    Fan, H., Oro, A. E., Scott, M. P. & Khavari, P. A. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med. 3, 788–792 (1997). SHH was overexpressed in keratinocytes to produce invasive tumours that were indistinguishable from BCC in the first direct malignant transformation of intact human tissue.

  11. 11

    Lazarov, M. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nature Med. 8, 1105–1114 (2002).

  12. 12

    Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003). References 11 and 12 describe a human tissue model of lethal epidermal SCC through expression of only two endogenous human genes, oncogenic Ras and a mediator of G1 escape.

  13. 13

    Ortiz-Urda, S. et al. Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307, 1773–1776 (2005). A combination of human genetics and human skin tissue models of cancer were used to identify a potential role for collagen VII, a normal BMZ constituent, in neoplastic invasion.

  14. 14

    Chudnovsky, Y., Adams, A. E., Robbins, P. B., Lin, Q. & Khavari, P. A. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nature Genet. 37, 745–749 (2005).

  15. 15

    Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genet. 36, 1306–1311 (2004).

  16. 16

    Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

  17. 17

    Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005).

  18. 18

    Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

  19. 19

    Anisimov, V. N., Ukraintseva, S. V. & Yashin, A. I. Cancer in rodents: does it tell us about cancer in humans? Nature Rev. Cancer 5, 807–819 (2005).

  20. 20

    Rangarajan, A., Hong, S. J., Gifford, A. & Weinberg, R. A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–183 (2004).

  21. 21

    Hamad, N. M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002). Tranforming actions of Ras were shown to be mediated through Ral in human fibroblasts and through Raf in mouse fibroblasts.

  22. 22

    Hahn, W. C. & Weinberg, R. A. Modelling the molecular circuitry of cancer. Nature Rev. Cancer 2, 331–341 (2002).

  23. 23

    Stenn, K. S. & Paus, R. Controls of hair follicle cycling. Physiol. Rev. 81, 449–494 (2001).

  24. 24

    Menon, G. K. New insights into skin structure: scratching the surface. Adv. Drug Deliv. Rev. 54 (Suppl.), S3–S17 (2002).

  25. 25

    Zhang, J. Y., Green, C. L., Tao, S. & Khavari, P. A. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev. 18, 17–22 (2004).

  26. 26

    Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

  27. 27

    Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 23, 181–187 (2002).

  28. 28

    Brash, D. E. Sunlight and the onset of skin cancer. Trends Genet. 13, 410–414 (1997).

  29. 29

    Khorshid, F. A. Comparative study of keloid formation in humans and laboratory animals. Med. Sci. Monit. 11, BR212–BR219 (2005).

  30. 30

    Donahue, B. A. et al. Selective uptake and sustained expression of AAV vectors following subcutaneous delivery. J. Gene Med. 1, 31–42 (1999).

  31. 31

    Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

  32. 32

    Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

  33. 33

    Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl Acad. Sci. USA 86, 1563–1567 (1989).

  34. 34

    Bailleul, B. et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62, 697–708 (1990).

  35. 35

    Byrne, C. & Fuchs, E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol. Cell. Biol. 13, 3176–3190 (1993).

  36. 36

    Carroll, J. M., Albers, K. M., Garlick, J. A., Harrington, R. & Taichman, L. B. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc. Natl Acad. Sci. USA 90, 10270–10274 (1993).

  37. 37

    Rothnagel, J. A., Greenhalgh, D. A., Gagne, T. A., Longley, M. A. & Roop, D. R. Identification of a calcium-inducible, epidermal-specific regulatory element in the 3′-flanking region of the human keratin 1 gene. J. Invest. Dermatol. 101, 506–513 (1993).

  38. 38

    Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524 (1998).

  39. 39

    Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998).

  40. 40

    Vassar, R., Coulombe, P. A., Degenstein, L., Albers, K. & Fuchs, E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64, 365–380 (1991).

  41. 41

    Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA 96, 8483–8488 (1999).

  42. 42

    Choate, K. A., Medalie, D. A., Morgan, J. R. & Khavari, P. A. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Med. 2, 1263–1267 (1996).

  43. 43

    Gordon, D. A., Fenjves, E. S., Williams, D. L. & Taichman, L. B. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implications for epidermal function and gene therapy. Proc. Natl Acad. Sci. USA 86, 8803–8807 (1989).

  44. 44

    Krueger, G. G. Fibroblasts and dermal gene therapy: a minireview. Hum. Gene Ther. 11, 2289–2296 (2000).

  45. 45

    Baek, S. C., Lin, Q., Robbins, P. B., Fan, H. & Khavari, P. A. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum. Gene Ther. 12, 1551–1558 (2001).

  46. 46

    Berking, C. et al. Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. Cancer Res. 64, 807–811 (2004).

  47. 47

    Hengge, U. R., Chan, E. F., Foster, R. A., Walker, P. S. & Vogel, J. C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nature Genet. 10, 161–166 (1995).

  48. 48

    Siprashvili, Z. & Khavari, P. A. Lentivectors for regulated and reversible cutaneous gene delivery. Mol. Ther. 9, 93–100 (2004).

  49. 49

    Fan, H., Lin, Q. & Khavari, P. A. Durable cutaneous gene delivery via direct administration of adenoviral and lentiviral vectors to human skin. J. Invest. Dermatol. 112, 638 (1999).

  50. 50

    Robbins, P. B. et al. In vivo restoration of laminin 5 β3 expression and function in junctional epidermolysis bullosa. Proc. Natl Acad. Sci. USA 98, 5193–5198 (2001).

  51. 51

    Ortiz-Urda, S. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J. Clin. Invest. 111, 251–255 (2003).

  52. 52

    Ortiz-Urda, S. et al. Stable nonviral genetic correction of inherited human skin disease. Nature Med. 8, 1166–1170 (2002).

  53. 53

    Medalie, D. A. et al. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127 (1996).

  54. 54

    Nickoloff, B. J. & Wrone-Smith, T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am. J. Pathol. 155, 145–158 (1999).

  55. 55

    Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–466 (2006).

  56. 56

    Yang, J. et al. Telomerized human microvasculature is functional in vivo. Nature Biotechnol. 19, 219–224 (2001).

  57. 57

    Supp, D. M., Wilson-Landy, K. & Boyce, S. T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 16, 797–804 (2002).

  58. 58

    Bevona, C. & Sober, A. J. Melanoma incidence trends. Dermatol. Clin. 20, 589–595 (2002).

  59. 59

    Spates, S. T., Mellette, J. R. Jr & Fitzpatrick, J. Metastatic basal cell carcinoma. Dermatol. Surg. 29, 650–652 (2003).

  60. 60

    High, A. & Zedan, W. Basal cell nevus syndrome. Curr. Opin. Oncol. 17, 160–166 (2005).

  61. 61

    Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic Hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

  62. 62

    Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

  63. 63

    Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet. 24, 216–217 (2000).

  64. 64

    Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

  65. 65

    Fan, H. & Khavari, P. A. Sonic hedgehog opposes epithelial cell cycle arrest. J. Cell Biol. 147, 71–76 (1999).

  66. 66

    Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564–573 (2005).

  67. 67

    Mason, P. J., Wilson, D. B. & Bessler, M. Dyskeratosis congenita — a disease of dysfunctional telomere maintenance. Curr. Mol. Med. 5, 159–170 (2005).

  68. 68

    Mallipeddi, R. Epidermolysis bullosa and cancer. Clin. Exp. Dermatol. 27, 616–623 (2002).

  69. 69

    Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T. & Ananthaswamy, H. N. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol. Carcinog. 4, 196–202 (1991).

  70. 70

    von Lintig, F. C. et al. Ras activation in human breast cancer. Breast Cancer Res. Treat. 62, 51–62 (2000).

  71. 71

    Hoa, M., Davis, S. L., Ames, S. J. & Spanjaard, R. A. Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res. 62, 7154–7156 (2002).

  72. 72

    Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

  73. 73

    Zhang, J. Y., Tao, S., Kimmel, R. & Khavari, P. A. CDK4 regulation by TNFR1 and JNK is required for NF-κB-mediated epidermal growth control. J. Cell Biol. 168, 561–566 (2005).

  74. 74

    Miliani de Marval, P. L., Macias, E., Conti, C. J. & Rodriguez-Puebla, M. L. Enhanced malignant tumorigenesis in Cdk4 transgenic mice. Oncogene 23, 1863–1873 (2004).

  75. 75

    Chudnovsky, Y., Khavari, P. A. & Adams, A. E. Melanoma genetics and the development of rational therapeutics. J. Clin. Invest. 115, 813–824 (2005). This study showed that tumours formed in regenerated human skin tissue by alterations in as few as three genes are indistinguishable from malignant melanoma.

  76. 76

    Rodolfo, M., Daniotti, M. & Vallacchi, V. Genetic progression of metastatic melanoma. Cancer Lett. 214, 133–147 (2004).

  77. 77

    Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

  78. 78

    Ramirez, R. D. et al. Progressive increase in telomerase activity from benign melanocytic conditions to malignant melanoma. Neoplasia 1, 42–49 (1999).

  79. 79

    Pirker, C. et al. Chromosomal imbalances in primary and metastatic melanomas: over-representation of essential telomerase genes. Melanoma Res. 13, 483–492 (2003).

  80. 80

    Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603 (2002).

  81. 81

    Boehm, J. S., Hession, M. T., Bulmer, S. E. & Hahn, W. C. Transformation of human and murine fibroblasts without viral oncoproteins. Mol. Cell. Biol. 25, 6464–6474 (2005).

  82. 82

    Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

  83. 83

    Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

  84. 84

    Dajee, M., Tarutani, M., Deng, H., Cai, T. & Khavari, P. A. Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21, 1527–1538 (2002).

  85. 85

    Bolotin, D. & Fuchs, E. Cancer: more than skin deep. Nature 421, 594–595 (2003).

  86. 86

    Ashton, K. J., Weinstein, S. R., Maguire, D. J. & Griffiths, L. R. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch. Dermatol. 139, 876–882 (2003).

  87. 87

    Casorzo, L. et al. Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis. Melanoma Res. 15, 155–160 (2005).

  88. 88

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

  89. 89

    Benjamin, T. & Vogt, P. K. in Virology (eds Fields, B. N. & Knipe, D. M.) 317–367 (Raven Press, New York, 1990).

  90. 90

    Proby, C. M. et al. Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp. Dermatol. 9, 104–117 (2000).

  91. 91

    Buell, J. F., Hanaway, M. J., Thomas, M., Alloway, R. R. & Woodle, E. S. Skin cancer following transplantation: the Israel Penn International Transplant Tumor Registry experience. Transplant Proc. 37, 962–963 (2005).

  92. 92

    Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

  93. 93

    Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F. G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

  94. 94

    Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

  95. 95

    Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

  96. 96

    Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

  97. 97

    Savoia, P., Trusolino, L., Pepino, E. & Marchisio, P. C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of α6β4 and BM-600/nicein. J. Invest. Dermatol. 101, 352–358 (1993).

  98. 98

    Baker, M. Upping the ante on antibodies. Nature Biotechnol. 23, 1065–1072 (2005).

  99. 99

    Yuspa, S. H. & Epstein, E. H. Jr. Cancer. An anchor for tumor cell invasion. Science 307, 1727–1728 (2005).

  100. 100

    Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA 101, 4966–4971 (2004).

  101. 101

    Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

  102. 102

    Tuveson, D. A. & Jacks, T. Technologically advanced cancer modeling in mice. Curr. Opin. Genet. Dev. 12, 105–110 (2002).

  103. 103

    Edwards, M. J., Hirsch, R. M., Broadwater, J. R., Netscher, D. T. & Ames, F. C. Squamous cell carcinoma arising in previously burned or irradiated skin. Arch. Surg. 124, 115–117 (1989).

  104. 104

    Green, C. L. & Khavari, P. Targets for molecular therapy of skin cancer. Semin. Cancer Biol. 14, 63–69 (2004).

Download references


A. Oro, M. P. Marinkovich, E. Epstein, H. Chang, D. Felsher, L. Attardi, J. Sage, S. Artandi, Z. Siprashvili, J. Reuter, P. Dumesic, R. Kimmel, T. Ridky, A. Adams, H. Lee, J. Zhang, J. Chudnovsky, J. Garcia, F. Scholl and S. Ortiz-Urda provided critical pre-submission review and helpful comments. S. Kohler and F. Scholl generously provided histology specimens. This work was supported by the Veterans Affairs Office of Research and Development, and by the NIH/NIAMS.

Author information

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links


National Cancer Institute

breast cancer

kidney cancer

lung cancer


prostate cancer

skin cancer


SEER Cancer Statistics Review

Sanger Institute Catalogue of Somatic Mutations in Cancer

Rights and permissions

Reprints and Permissions

About this article

Further reading