Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A candidate gene approach to searching for low-penetrance breast and prostate cancer genes

Abstract

Most cases of breast and prostate cancer are not associated with mutations in known high-penetrance genes, indicating the involvement of multiple low-penetrance risk alleles. Studies that have attempted to identify these genes have met with limited success. The National Cancer Institute Breast and Prostate Cancer Cohort Consortium ? a pooled analysis of multiple large cohort studies with a total of more than 5,000 cases of breast cancer and 8,000 cases of prostate cancer ? was therefore initiated. The goal of this consortium is to characterize variations in approximately 50 genes that mediate two pathways that are associated with these cancers ? the steroid-hormone metabolism pathway and the insulin-like growth factor signalling pathway ? and to associate these variations with cancer risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolism of sex steroids associated with breast cancer.
Figure 2: Metabolism of sex steroids potentially associated with prostate cancer.
Figure 3: The insulin-like growth factor signalling pathway and cell proliferation and survival.
Figure 4: SNP identification by data mining and by resequencing the BPC3 SNP discovery panel.

Similar content being viewed by others

References

  1. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer ? analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78?85 (2000).

    CAS  PubMed  Google Scholar 

  2. Pharoah, P. D., Dunning, A. M., Ponder, B. A. & Easton, D. F. Association studies for finding cancer-susceptibility genetic variants. Nature Rev. Cancer 4, 850?860 (2004).

    CAS  Google Scholar 

  3. Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nature Rev. Cancer 4, 505?518 (2004).

    CAS  Google Scholar 

  4. Feigelson, H. S. et al. Cytochrome P450c17α gene (CYP17) polymorphism predicts use of hormone replacement therapy. Cancer Res. 59, 3908?3910 (1999).

    CAS  PubMed  Google Scholar 

  5. Thompson, P. A. & Ambrosone, C. Molecular epidemiology of genetic polymorphisms in estrogen metabolizing enzymes in human breast cancer. J. Natl Cancer Inst. Monogr. 27, 125?134 (2000).

    CAS  Google Scholar 

  6. Feigelson, H. S., Coetzee, G. A., Kolenel, L. N., Ross, R. K. & Henderson, B. E. A polymorphism in the CYP17 gene increases the risk of breast cancer. Cancer Res. 57, 1063?1065 (1997).

    CAS  PubMed  Google Scholar 

  7. Haiman, C. A. et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res. 59, 1015?1020 (1999).

    CAS  PubMed  Google Scholar 

  8. Henderson, B. E. & Feigelson, H. S. Hormonal carcinogenesis. Carcinogenesis 21, 427?433 (2000).

    CAS  PubMed  Google Scholar 

  9. Thomas, H. V. et al. A prospective study of endogenous serum hormone concentrations and breast cancer risk in premenopausal women on the island of Guernsey. Br. J. Cancer 75, 1075?1079 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hankinson, S. E. et al. Plasma sex steriod hormone levels and risk of breast cancer in postmenopausal women. J. Natl Cancer Inst. 90, 1292?1299 (1998).

    CAS  PubMed  Google Scholar 

  11. Cauley, J. A. et al. Elevated serum estradiol and testosterone concentrations are associated with high risk for breast cancer. Study of Osteoporotic Fractures Research Group. Ann. Intern. Med. 130, 270?277 (1999).

    CAS  PubMed  Google Scholar 

  12. Key, T., Appleby, P., Barnes, I. & Reeves, G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J. Natl Cancer Inst. 94, 606?616 (2002).

    CAS  PubMed  Google Scholar 

  13. Key, T. J. & Pike, M. C. The role of oestrogens and progestogens in the epidemiology and prevention of breast cancer. Eur. J. Cancer Clin. Oncol. 24, 29?43 (1988).

    CAS  PubMed  Google Scholar 

  14. Bernstein, L. & Ross, R. Endogenous hormones and breast cancer risk. Epidemiol Rev. 15, 48?65 (1993).

    CAS  PubMed  Google Scholar 

  15. Ross, R. K., Paganini-Hill, A., Wan, P. C. & Pike, M. C. Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J. Natl Cancer Inst. 92, 328?332 (2000).

    CAS  PubMed  Google Scholar 

  16. Olsson, H., Bladstrom, A., Ingvar, C. & Moller, T. R. A population-based cohort study of HRT use and breast cancer in southern Sweden. Br. J. Cancer 85, 674?677 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53,297 women with breast cancer and 100,239 women without breast cancer from 54 epidemiological studies. Lancet 347, 1713?1727 (1996).

  18. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiologic studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 350, 1047?1059 (1997).

  19. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321?333 (2002).

    CAS  PubMed  Google Scholar 

  20. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291, 1701?1712 (2004).

    CAS  PubMed  Google Scholar 

  21. Kolonel, L. N., Altshuler, D. & Henderson, B. E. The Multiethnic Cohort study: exploring genes, lifestyle and cancer risk. Nature Rev. Cancer 4, 519?527 (2004).

    CAS  Google Scholar 

  22. Secreto, G. & Zumoff, B. Abnormal production of androgens in women with breast cancer. Anticancer Res. 14, 2113?2117 (1994).

    CAS  PubMed  Google Scholar 

  23. Kaaks, R. Nutrition, hormones, and breast cancer: is insulin the missing link? Cancer Causes Control 7, 605?625 (1996).

    CAS  PubMed  Google Scholar 

  24. Ehrmann, D. A., Barnes, R. B. & Rosenfield, R. I. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenis due to dysregulation of androgen secretion. Endocr. Rev. 16, 322?353 (1995).

    CAS  PubMed  Google Scholar 

  25. Zhu, B. T. & Conney, A. H. Functional role of estrogen metabolism in target cells: review and perspective. Carcinogenesis 19, 1?27 (1998).

    PubMed  Google Scholar 

  26. Jefcoate, C. R. et al. Tissue-specific synthesis and oxidative metabolism of estrogens. J. Natl Cancer Inst. Monogr. 27, 95?112 (2000).

    CAS  Google Scholar 

  27. Yue, W. et al. Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J. Steroid Biochem. Mol. Biol. 86, 477?486 (2003).

    CAS  PubMed  Google Scholar 

  28. Zhu, Y. S., Katz, M. D. & Imperato-McGinley, J. Natural potent androgens: lessons from human genetic models. Baillieres Clin. Endocrinol. Metab. 12, 83?113 (1998).

    CAS  PubMed  Google Scholar 

  29. Ball, P. & Knuppen, R. Catecholoestrogens (2-and 4-hydroxyoestrogens): chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinol. Suppl. (Copenh.) 232, 1?127 (1980).

    CAS  Google Scholar 

  30. Martucci, C. P. & Fishman, J. P450 enzymes of estrogen metabolism. Pharma. Ther. 57, 237?257 (1993).

    CAS  Google Scholar 

  31. Randall, V. A. Role of 5 α-reductase in health and disease. Baillieres Clin. Endocrinol. Metab. 8, 405?431 (1994).

    CAS  PubMed  Google Scholar 

  32. Bosland, M. C. Hormonal factors in carcinogenesis of the prostate and testis in humans and in animal products. Prog. Clin. Biol. Res. 394, 309?352 (1996).

    CAS  PubMed  Google Scholar 

  33. Lookingbill, D. P. et al. Clinical and biochemical parameters of androgen action in normal healthy Caucasian versus Chinese subjects. J. Clin. Edocrinol. Metab. 72, 1242?1248 (1991).

    CAS  Google Scholar 

  34. van Houten, M. E. & Gooren, L. J. Differences in reproductive endocrinology between Asian men and Caucasian men?a literature review. Asian J. Androl. 2, 13?20 (2000).

    CAS  PubMed  Google Scholar 

  35. Platz, E. A. & Giovannucci, E. The epidemiology of sex steroid hormones and their signaling and metabolic pathways in the etiology of prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 237?253 (2004).

    CAS  PubMed  Google Scholar 

  36. Kaaks, R., Lukanova, A. & Sommersberg, B. Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review. Prostate Cancer Prostatic Dis. 3, 157?172 (2000).

    CAS  PubMed  Google Scholar 

  37. Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 92, 1472?1489 (2000).

    CAS  PubMed  Google Scholar 

  38. Khandwala, H. M., McCutcheon, I. E., Flyvbjerg, A. & Friend, K. E. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr. Rev. 21, 215?244 (2000).

    CAS  PubMed  Google Scholar 

  39. Kaaks, R. & Lukanova, A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc. 60, 91?106 (2001).

    CAS  PubMed  Google Scholar 

  40. Peyrat, J. P. et al. Plasma insulin-like growth factor-1 (IGF-1) concentrations in human breast cancer. Eur. J. Cancer 29A, 492?497 (1993).

    CAS  PubMed  Google Scholar 

  41. Bohlke, K., Cramer, D. W., Trichopoulos, D. & Mantzoros, C. S. Insulin-like growth factor-I in relation to premenopausal ductal carcinoma in situ of the breast. Epidemiology 9, 570?573 (1998).

    CAS  PubMed  Google Scholar 

  42. Toniolo, P. et al. Serum insulin-like growth factor-I and breast cancer. Int. J. Cancer 88, 828?832 (2000).

    CAS  PubMed  Google Scholar 

  43. Hankinson, S. E. et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351, 1393?1396 (1998).

    CAS  PubMed  Google Scholar 

  44. Hall, K., Hilding, A. & Thoren, M. Determinants of circulating insulin-like growth factor-I. J. Endocrinol Invest. 22, 48?57 (1999).

    CAS  PubMed  Google Scholar 

  45. Hong, Y., Brismar, K., Hall, K., Pedersen, N. L. & de Faire, U. Associations between insulin-like growth factor-I (IGF-I), IGF-binding protein-1, insuin and other metabolic measures after controlling for genetic influences: results from middle-aged and elderly monozygotic twins. J. Endocrinol. 153, 251?257 (1997).

    CAS  PubMed  Google Scholar 

  46. Harrela, M. et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J. Clin. Invest. 98, 2612?2615 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lopez-Bermejo, A., Buckway, C. K. & Rosenfeld, R. G. Genetic defects of the growth hormone-insulin-like growth factor axis. Trends Endocrinol. Metab. 11, 39?49 (2000).

    CAS  PubMed  Google Scholar 

  48. Jernstrom, H. et al. Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol. Biomarkers Prev. 10, 377?384 (2001).

    CAS  PubMed  Google Scholar 

  49. Rasmussen, S. K. et al. Studies of the variability of the genes encoding the insulin-like growth factor I receptor and its ligand in relation to type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 1606?1610 (2000).

    CAS  PubMed  Google Scholar 

  50. Sun, G., Chagnon, M. & Bouchard, C. A common polymorphism in the human insulin-like growth factor binding protein 3 gene. Mol. Cell. Probes 14, 55?56 (2000).

    CAS  PubMed  Google Scholar 

  51. Sasi, R., Puebla, L., Khare, S. & Patel, Y. C. Polymorphism in the 5′ flanking region of the human somatostatin receptor subtype 5. Gene 214, 45?49 (1998).

    CAS  PubMed  Google Scholar 

  52. Mantzoros, C. S. et al. Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br. J. Cancer 76, 1115?1118 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wolk, A. et al. Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J. Natl Cancer Inst. 90, 911?915 (1998).

    CAS  PubMed  Google Scholar 

  54. Chokkalingam, A. P. et al. Insulin-like growth factors and prostate cancer: a population-based case-control study in China. Cancer Epidemiol. Biomarkers. Prev. 10, 431?437 (2001).

    Google Scholar 

  55. van den Brandt, P. A. et al. Pooled analysis of prospective cohort studies on height, weight and breast cancer risk. Am. J. Epidemiol. 152, 514?527 (2000).

    CAS  PubMed  Google Scholar 

  56. Siiteri, P. K. Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45, 277?282 (1987).

    CAS  PubMed  Google Scholar 

  57. Austin, H., Austin, J. M., Jr., Partridge, E. E., Hatch, K. D. & Shingleton, H. M. Endometrial cancer, obesity, and body fat distribution. Cancer Res. 51, 568?572 (1991).

    CAS  PubMed  Google Scholar 

  58. Newcomb, P. A. et al. Association of dietary and life-style factors with sex hormones in postmenopausal women. Epidemiol. 6, 318?321 (1995).

    CAS  Google Scholar 

  59. Franks, S. Polycystic ovary syndrome. N. Engl. J. Med. 333, 853?861 (1995).

    CAS  PubMed  Google Scholar 

  60. Dunaif, A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18, 774?800 (1997).

    CAS  PubMed  Google Scholar 

  61. Urbanek, M. et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc. Natl Acad. Sci. USA 96, 8573?8578 (1999).

    CAS  PubMed  Google Scholar 

  62. Legro, R. S. et al. Phenotype and genotype in polycystic ovary syndrome. Recent Prog. Hormone Res. 53, 217?256 (1998).

    CAS  Google Scholar 

  63. De Cree, C. et al. Response of catecholestrogen metabolism to acute graded exercise in normal menstruating women before and after training. J. Clin. Endocrinol. Metab. 82, 3342?3348 (1997).

    CAS  PubMed  Google Scholar 

  64. Haiman, C. A., Hankinson, S. E., Colditz, G. A., Hunter, D. J. & De Vivo, I. A polymorphism in CYP17 and endometrial cancer risk. Cancer Res. 61, 3955?3960 (2001).

    CAS  PubMed  Google Scholar 

  65. McKean-Cowdin, R. et al. Risk of endometrial cancer and estrogen replacement therapy history by CYP17 genotype. Cancer Res. 61, 848?849 (2001).

    CAS  PubMed  Google Scholar 

  66. Michnovicz, J. J., Naganuma, H., Hershcopf, R. J., Bradlow, H. L. & Fishman, J. Increased urinary catechol estrogen excretion in female smokers. Steroids 52, 69?83 (1988).

    CAS  PubMed  Google Scholar 

  67. Couch, F. J. et al. Cigarette smoking increases risk for breast cancer in high-risk breast cancer families. Cancer Epidemiol. Biomarkers Prev. 10, 327?332 (2001).

    CAS  PubMed  Google Scholar 

  68. Johnson, K. C., Hu, J. & Mao, Y. Passive and active smoking and breast cancer risk in Canada, 1994?97. The Canadian Cancer Registries Epidemiology Research Group. Cancer Causes Control 11, 211?221 (2000).

    CAS  PubMed  Google Scholar 

  69. Terry, P. D. & Rohan, T. E. Cigarette smoking and the risk of breast cancer in women: a review of the literature. Cancer Epidemiol. Biomarkers Prev. 11, 953?971 (2002).

    PubMed  Google Scholar 

  70. Mitrunen, K. & Hirvonen, A. Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res. 544, 9?41 (2003).

    CAS  PubMed  Google Scholar 

  71. Packer, B. R. et al. SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res. 32, D528?D532 (2004).

  72. Calle, E. E. et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94, 2490?2501 (2002).

    PubMed  Google Scholar 

  73. The α-Tocopherol β-Carotene Cancer Prevention Study Group. The α-Tocopherol β-Carotene Lung Cancer Prevention Study: design, methods, participant characteristics, and compliance. Ann. Epidemiol. 4, 1?10 (1994).

  74. Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113?1124 (2002).

    CAS  PubMed  Google Scholar 

  75. Hayes, R. B. et al. Etiologic and early marker studies in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin. Trials 21, 349S?355S (2000).

    CAS  PubMed  Google Scholar 

  76. Sesso, H. D. et al. Comparison of baseline characteristics and mortality experience of participants and nonparticipants in a randomized clinical trial: the Physicians' Health Study. Control Clin. Trials 23, 686?702 (2002).

    PubMed  Google Scholar 

  77. Chan, J. M. et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl Cancer Inst. 94, 1099?1106 (2002).

    CAS  PubMed  Google Scholar 

  78. Giovannucci, E. et al. Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol. Biomarkers Prev. 12, 84?89 (2003).

    CAS  PubMed  Google Scholar 

  79. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst. 96, 434?442 (2004).

    PubMed  Google Scholar 

  80. Cara, J. F. Insulin-like growth factors, insulin-like growth factor binding proteins and ovarian androgen production. Horm. Res. 42, 49?54 (1994).

    CAS  PubMed  Google Scholar 

  81. Lin, T., Haskell, J., Vinson, N. & Terracio, L. Direct stimulatory effects of insulin-like growth factor-I on Leydig cell steroidogenesis in primary culture. Biochem. Biophys. Res. Commun. 137, 950?956 (1986).

    CAS  PubMed  Google Scholar 

  82. Stram, D. O. et al. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum. Hered. 55, 27?36 (2003).

    PubMed  Google Scholar 

  83. Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74, 106?120 (2004).

    CAS  PubMed  Google Scholar 

  84. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet. 33 (suppl.), 228?237 (2003).

    CAS  PubMed  Google Scholar 

  85. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231?238 (1999).

    CAS  PubMed  Google Scholar 

  86. Li, W. H. & Sadler, L. A. Low nucleotide diversity in man. Genetics 129, 513?523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes fro blood-pressure homeostatsis. Nature Genet. 22, 239?247 (1999).

    CAS  PubMed  Google Scholar 

  88. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928?933 (2001).

    CAS  PubMed  Google Scholar 

  89. Marth, G. et al. Single-nucleotide polymorphisms in the public domain: how useful are they? Nature Genet. 27, 371?372 (2001).

    CAS  PubMed  Google Scholar 

  90. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225?2229 (2002).

    CAS  PubMed  Google Scholar 

  91. Harpending, H. & Rogers, A. Genetic perspectives on human origins and differentiation. Annu. Rev. Genomics Hum. Genet. 1, 361?385 (2000).

    CAS  PubMed  Google Scholar 

  92. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832?837 (2002).

    CAS  PubMed  Google Scholar 

  93. Rosand, J. & Altshuler, D. Human genome sequence variation and the search for genes influencing stroke. Stroke 34, 2512?2516 (2003).

    CAS  PubMed  Google Scholar 

  94. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421?424 (2005).

    CAS  PubMed  Google Scholar 

  95. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385?389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419?421 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the participants in the component cohort studies, and the expert contributions of: Hardeep Ranu, Craig Labadie, Lisa Cardinale and Shamika Ketkar from Harvard University, USA; William Modi, Merideth Yeager, Robert Welch, Cynthia Glaser and Laurie Burdett from the National Cancer Institute; Mourad Sahbatou and Emmanuel Tubacher from Centre d'Etude du Polymorphism Humain; and Loreall Pooler, Stephanie Riley, John Casagrande and Reed Comire from the University of Southern California, USA.

Author information

Authors and Affiliations

Consortia

Corresponding author

Correspondence to David Hunter.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Additional information

Members of the BPC3 who have agreed to be named are listed in Box 2.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

ACTH

BRCA1

CYP17A1

IGF1

IGFBP3

SHBG

TP53

National Cancer Institute

breast cancer

prostate cancer

FURTHER INFORMATION

Core genotyping facility website of the NCI

dpSNP

Haploview

Haplotype tagging SNP (htSNP) selection in the Multiethnic Cohort Study

Sequence validated SNP assays (SNP500)

USC?Norris Comprehensive Cancer Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

The National Cancer Institute Breast and Prostate Cancer Cohort Consortium. A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat Rev Cancer 5, 977–985 (2005). https://doi.org/10.1038/nrc1754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing