Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oncogenic PI3K deregulates transcription and translation

Key Points

  • Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that generate second messengers that govern cellular activities and properties including proliferation, survival, motility and morphology.

  • PIK3CA, the gene that encodes the catalytic subunit p110a of PI3K, is frequently mutated in human solid tumours.

  • Cancer-specific mutations are clustered in the helical and the kinase domains of p110a. The amino-acid residues E542, E545 and H1047 are prominent mutational hot spots.

  • The mutations in the p110a hot spots induce a gain of enzymatic function and confer oncogenic activity both in vitro and in vivo.

  • The oncogenicity of PI3K is the result of interactions with transcriptional and translational controls.


There have long been indications of a role for PI3K (phosphatidylinositol 3-kinase) in cancer pathogenesis. Experimental data document a requirement for deregulation of both transcription and translation in PI3K-mediated oncogenic transformation. The recent discoveries of cancer-specific mutations in PIK3CA, the gene that encodes the catalytic subunit p110α of PI3K, have heightened the interest in the oncogenic potential of this lipid kinase and have made p110α an ideal drug target.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: PI3Ks constitute a family of enzymes that is divided into three classes.
Figure 2: PI3K–AKT signalling affects translation and transcription.
Figure 3: Point mutations in PIK3CA observed in human tumours.


  1. 1

    Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004). The first study to describe point mutations in the gene that encodes p110α in various solid tumours.

    CAS  PubMed  Google Scholar 

  2. 2

    Bachman, K. E. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. 3, 772–775 (2004).

    CAS  PubMed  Google Scholar 

  3. 3

    Campbell, I. G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 64, 7678–7681 (2004).

    CAS  PubMed  Google Scholar 

  4. 4

    Broderick, D. K. et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 64, 5048–5050 (2004).

    CAS  PubMed  Google Scholar 

  5. 5

    Lee, J. W. et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24, 1477–1480 (2005).

    CAS  PubMed  Google Scholar 

  6. 6

    Levine, D. A. et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin. Cancer Res. 11, 2875–2878 (2005).

    CAS  PubMed  Google Scholar 

  7. 7

    Li, V. S. et al. Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer 5, 29 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Saal, L. H. et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 65, 2554–2559 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Wang, Y., Helland, A., Holm, R., Kristensen, G. B. & Borresen-Dale, A. L. PIK3CA mutations in advanced ovarian carcinomas. Hum. Mutat. 25, 322 (2005).

    CAS  PubMed  Google Scholar 

  10. 10

    Hartmann, C., Bartels, G., Gehlhaar, C., Holtkamp, N. & von Deimling, A. PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol. 109, 639–642 (2005).

    CAS  PubMed  Google Scholar 

  11. 11

    Vanhaesebroeck, B. & Waterfield, M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239–254 (1999).

    CAS  PubMed  Google Scholar 

  12. 12

    Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    CAS  PubMed  Google Scholar 

  13. 13

    Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nature Rev. Immunol. 3, 317–330 (2003).

    CAS  Google Scholar 

  14. 14

    Wymann, M. P., Zvelebil, M. & Laffargue, M. Phosphoinositide 3-kinase signalling — which way to target? Trends Pharmacol. Sci. 24, 366–376 (2003).

    CAS  PubMed  Google Scholar 

  15. 15

    Deane, J. A. & Fruman, D. A. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu. Rev. Immunol. 22, 563–598 (2004).

    CAS  PubMed  Google Scholar 

  16. 16

    Okkenhaug, K. & Vanhaesebroeck, B. New responsibilities for the PI3K regulatory subunit p85α. Sci. STKE 65, PE1 (2001).

    Google Scholar 

  17. 17

    Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    CAS  PubMed  Google Scholar 

  18. 18

    Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442–2451 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Corvera, S. & Czech, M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Balendran, A. et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr. Biol. 9, 393–404 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Persad, S. et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem. 276, 27462–27469 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Toker, A. & Newton, A. C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J. Biol. Chem. 275, 8271–8274 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Feng, J., Park, J., Cron, P., Hess, D. & Hemmings, B. A. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189–41196 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  25. 25

    Wishart, M. J. & Dixon, J. E. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12, 579–585 (2002).

    CAS  PubMed  Google Scholar 

  26. 26

    Maehama, T., Taylor, G. S. & Dixon, J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247–279 (2001).

    CAS  PubMed  Google Scholar 

  27. 27

    Ali, I. U., Schriml, L. M. & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J. Natl Cancer Inst. 91, 1922–1932 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Leslie, N. R. & Downes, C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).

    CAS  PubMed  Google Scholar 

  31. 31

    Staal, S. P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA 84, 5034–5037 (1987).

    CAS  PubMed  Google Scholar 

  32. 32

    Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276, 1848–1850 (1997). Reports the isolation and identification of the v-P3k oncoprotein, a retroviral and tumorigenic homologue of p110α.

    CAS  PubMed  Google Scholar 

  33. 33

    Bellacosa, A., Testa, J. R., Staal, S. P. & Tsichlis, P. N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274–277 (1991).

    CAS  PubMed  Google Scholar 

  34. 34

    Aoki, M. et al. The catalytic subunit of phosphoinositide 3-kinase: requirements for oncogenicity. J. Biol. Chem. 275, 6267–6275 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Aoki, M., Batista, O., Bellacosa, A., Tsichlis, P. & Vogt, P. K. The akt kinase: molecular determinants of oncogenicity. Proc. Natl Acad. Sci. USA 95, 14950–14955 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Borlado, L. R. et al. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J. 14, 895–903 (2000).

    CAS  PubMed  Google Scholar 

  37. 37

    Janssen, J. W., Schleithoff, L., Bartram, C. R. & Schulz, A. S. An oncogenic fusion product of the phosphatidylinositol 3-kinase p85b subunit and HUMORF8, a putative deubiquitinating enzyme. Oncogene 16, 1767–1772 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 17, 743–753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Jucker, M. et al. Expression of a mutated form of the p85α regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 16, 894–901 (2002).

    CAS  PubMed  Google Scholar 

  40. 40

    Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001).

    CAS  PubMed  Google Scholar 

  41. 41

    Katoh, M. Human FOX gene family (Review). Int. J. Oncol. 25, 1495–1500 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Vogt, P. K., Jiang, H. & Aoki, M. Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4, 908–913 (2005).

    CAS  PubMed  Google Scholar 

  43. 43

    Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE 172, RE5 (2003).

    Google Scholar 

  44. 44

    Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    CAS  PubMed  Google Scholar 

  45. 45

    Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004). Shows that FOXO1 represses p21cip1 gene expression in a complex with Smad. The oncoprotein Fox G1 binds to this complex and inhibits its repressive activity.

    CAS  Google Scholar 

  46. 46

    Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell. Biol. 22, 7842–7852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Biggs, W. H., Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    CAS  PubMed  Google Scholar 

  49. 49

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  50. 50

    Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  51. 51

    Takaishi, H. et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc. Natl Acad. Sci. USA 96, 11836–11841 (1999).

    CAS  PubMed  Google Scholar 

  52. 52

    Tang, E. D., Nunez, G., Barr, F. G. & Guan, K. L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741–16746 (1999).

    CAS  PubMed  Google Scholar 

  53. 53

    Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell. Biol. 21, 3534–3546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Rena, G., Prescott, A. R., Guo, S., Cohen, P. & Unterman, T. G. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem. J. 354, 605–612 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Zhao, X. et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem. J. 378, 839–849 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Obsil, T., Ghirlando, R., Anderson, D. E., Hickman, A. B. & Dyda, F. Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264–15272 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Perrot, V. & Rechler, M. M. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol. Endocrinol. 19, 2283–2298 (2005).

    CAS  PubMed  Google Scholar 

  59. 59

    Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).

    CAS  PubMed  Google Scholar 

  62. 62

    Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA 100, 11285–11290 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004). Reports that IκB is the kinase responsible for inactivation of FOXO3a in cancer cells that lack elevated levels of phospho-AKT.

    CAS  PubMed  Google Scholar 

  64. 64

    Aggarwal, B. B. Nuclear factor-κB: the enemy within. Cancer Cell 6, 203–208 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    CAS  Google Scholar 

  66. 66

    Nakanishi, C. & Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nature Rev. Cancer 5, 297–309 (2005).

    CAS  Google Scholar 

  67. 67

    Ozes, O. N. et al. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85 (1999).

    CAS  PubMed  Google Scholar 

  68. 68

    Romashkova, J. A. & Makarov, S. S. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86–90 (1999).

    CAS  PubMed  Google Scholar 

  69. 69

    Kane, L. P., Mollenauer, M. N., Xu, Z., Turck, C. W. & Weiss, A. Akt-dependent phosphorylation specifically regulates Cot induction of NF-κ B-dependent transcription. Mol. Cell. Biol. 22, 5962–5974 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Madrid, L. V., Mayo, M. W., Reuther, J. Y. & Baldwin, A. S. Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-κ B through utilization of the Iκ B kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276, 18934–18940 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Sizemore, N., Leung, S. & Stark, G. R. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19, 4798–4805 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Sizemore, N., Lerner, N., Dombrowski, N., Sakurai, H. & Stark, G. R. Distinct roles of the Iκ B kinase α and β subunits in liberating nuclear factor κ B (NF-κ B) from Iκ B and in phosphorylating the p65 subunit of NF-κ B. J. Biol. Chem. 277, 3863–3869 (2002).

    CAS  PubMed  Google Scholar 

  73. 73

    Asano, T. et al. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells. Oncogene 23, 8571–8580 (2004).

    CAS  PubMed  Google Scholar 

  74. 74

    Liptay, S. et al. Mitogenic and antiapoptotic role of constitutive NF-κB/Rel activity in pancreatic cancer. Int. J. Cancer 105, 735–746 (2003).

    CAS  PubMed  Google Scholar 

  75. 75

    Kim, S. et al. Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-α/nuclear factor-κB (NF-κB)-inducing kinase/NF-κB pathway is linked to a default IκB-α autoregulatory loop. J. Biol. Chem. 279, 4285–4291 (2004).

    CAS  PubMed  Google Scholar 

  76. 76

    Vasudevan, K. M., Gurumurthy, S. & Rangnekar, V. M. Suppression of PTEN expression by NF-κ B prevents apoptosis. Mol. Cell. Biol. 24, 1007–1021 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Wanzel, M. et al. Akt and 14-3-3ε regulate Miz1 to control cell-cycle arrest after DNA damage. Nature Cell Biol. 7, 30–41 (2005).

    CAS  PubMed  Google Scholar 

  78. 78

    Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    CAS  PubMed  Google Scholar 

  79. 79

    Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    CAS  PubMed  Google Scholar 

  80. 80

    Boyle, W. J. et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64, 573–584 (1991).

    CAS  PubMed  Google Scholar 

  81. 81

    de Groot, R. P., Auwerx, J., Bourouis, M. & Sassone-Corsi, P. Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene 8, 841–847 (1993).

    CAS  PubMed  Google Scholar 

  82. 82

    Nikolakaki, E., Coffer, P. J., Hemelsoet, R., Woodgett, J. R. & Defize, L. H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 8, 833–840 (1993).

    CAS  PubMed  Google Scholar 

  83. 83

    Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    CAS  PubMed  Google Scholar 

  86. 86

    Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    CAS  PubMed  Google Scholar 

  87. 87

    Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005). Shows that GSK3 mediated phosphorylation marks c-Jun for proteasomal degradation, a mechanism that is no longer in place for oncogenic v-Jun.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Jiang, B. H. et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 12, 363–369 (2001).

    CAS  PubMed  Google Scholar 

  89. 89

    Hamilton, G. S. & Steiner, J. P. Immunophilins: beyond immunosuppression. J. Med. Chem. 41, 5119–5143 (1998).

    CAS  PubMed  Google Scholar 

  90. 90

    Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).

    CAS  PubMed  Google Scholar 

  91. 91

    Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    CAS  PubMed  Google Scholar 

  92. 92

    Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    CAS  PubMed  Google Scholar 

  93. 93

    Chiu, M. I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl Acad. Sci. USA 91, 12574–12578 (1994). References 91–93 identify mammalian TOR as a target of the FKBP12–rapamycin complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl Acad. Sci. USA 92, 4947–4951 (1995).

    CAS  PubMed  Google Scholar 

  95. 95

    Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    CAS  PubMed  Google Scholar 

  96. 96

    Oshiro, N. et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359–366 (2004).

    CAS  PubMed  Google Scholar 

  97. 97

    Thomas, G., Sabatini, D. M. & Hall, N. M. (Eds.) TOR — Target of Rapamycin (Springer-Verlag, Berlin, 2004). A comprehensive compilation of literature on TOR.

    Google Scholar 

  98. 98

    Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434 (2004). Shows that TOR regulates Pol I activity through reciprocal phosphorylation of TIF-IA.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Martin, D. E., Soulard, A. & Hall, M. N. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979 (2004).

    CAS  PubMed  Google Scholar 

  100. 100

    Hannan, K. M. et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862–8877 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Mahajan, P. B. Modulation of transcription of rRNA genes by rapamycin. Int. J. Immunopharmacol. 16, 711–721 (1994).

    CAS  PubMed  Google Scholar 

  102. 102

    Zaragoza, D., Ghavidel, A., Heitman, J. & Schultz, M. C. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18, 4463–4470 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004). An excellent review of the signalling network that surrounds TOR.

    CAS  PubMed  Google Scholar 

  104. 104

    Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    CAS  PubMed  Google Scholar 

  105. 105

    Radimerski, T. et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nature Cell Biol. 4, 251–255 (2002).

    CAS  PubMed  Google Scholar 

  106. 106

    Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Pende, M. et al. S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 24, 3112–3124 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Jefferies, H. B. et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Stolovich, M. et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol. Cell. Biol. 22, 8101–8113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Lin, T. A. et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266, 653–656 (1994).

    CAS  PubMed  Google Scholar 

  111. 111

    Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101 (1997).

    CAS  PubMed  Google Scholar 

  112. 112

    Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).

    CAS  PubMed  Google Scholar 

  113. 113

    Gingras, A. C., Kennedy, S. G., O'Leary, M. A., Sonenberg, N. & Hay, N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12, 502–513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    CAS  PubMed  Google Scholar 

  115. 115

    Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002). References 114 and 115 report the identification of Raptor as a TOR-interacting protein necessary for the phosphorylation of TOR targets.

    CAS  PubMed  Google Scholar 

  116. 116

    Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461–15464 (2003).

    CAS  PubMed  Google Scholar 

  117. 117

    Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797–806 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Schalm, S. S. & Blenis, J. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 12, 632–639 (2002).

    CAS  PubMed  Google Scholar 

  119. 119

    Aoki, M., Blazek, E. & Vogt, P. K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl Acad. Sci. USA 98, 136–141. (2001).

    CAS  PubMed  Google Scholar 

  120. 120

    Penuel, E. & Martin, G. S. Transformation by v-Src: Ras–MAPK and PI3K–mTOR mediate parallel pathways. Mol. Biol. Cell 10, 1693–1703 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    CAS  PubMed  Google Scholar 

  122. 122

    Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001). References 121 and 122 demonstrate that inhibition of TOR by the rapamycin derivative CCI-779 blocks tumour growth in a PTEN -deficient setting.

    CAS  PubMed  Google Scholar 

  123. 123

    Minich, W. B. & Ovchinnikov, L. P. Role of cytoplasmic mRNP proteins in translation. Biochimie 74, 477–483 (1992).

    CAS  PubMed  Google Scholar 

  124. 124

    Davydova, E. K., Evdokimova, V. M., Ovchinnikov, L. P. & Hershey, J. W. Overexpression in COS cells of p50, the major core protein associated with mRNA, results in translation inhibition. Nucleic Acids Res. 25, 2911–2916 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Evdokimova, V. M. & Ovchinnikov, L. P. Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int. J. Biochem. Cell Biol. 31, 139–149 (1999).

    CAS  PubMed  Google Scholar 

  126. 126

    Nekrasov, M. P. et al. The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J. Biol. Chem. 278, 13936–13943 (2003).

    CAS  PubMed  Google Scholar 

  127. 127

    Bader, A. G., Felts, K. A., Jiang, N., Chang, H. W. & Vogt, P. K. Y box-binding protein 1 induces resistance to oncogenic transformation by the phosphatidylinositol 3-kinase pathway. Proc. Natl Acad. Sci. USA 100, 12384–12389 (2003).

    CAS  PubMed  Google Scholar 

  128. 128

    Bader, A. G. & Vogt, P. K. Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol. Cell. Biol. 25, 2095–2106 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Preiss, T., Baron-Benhamou, J., Ansorge, W. & Hentze, M. W. Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. Nature Struct. Biol. 10, 1039–1047 (2003).

    CAS  PubMed  Google Scholar 

  130. 130

    Grolleau, A. et al. Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J. Biol. Chem. 277, 22175–22184 (2002).

    CAS  PubMed  Google Scholar 

  131. 131

    Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell 12, 889–901 (2003). Reports that existing mRNAs are differentially associated with polysomes in cells that have been transformed by AKT and SRC.

    CAS  PubMed  Google Scholar 

  132. 132

    Graff, J. R. & Zimmer, S. G. Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis 20, 265–273 (2003).

    CAS  PubMed  Google Scholar 

  133. 133

    Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  134. 134

    del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    CAS  PubMed  Google Scholar 

  135. 135

    Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    CAS  PubMed  Google Scholar 

  136. 136

    Fujita, N., Sato, S., Katayama, K. & Tsuruo, T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem. 277, 28706–28713 (2002).

    CAS  PubMed  Google Scholar 

  137. 137

    Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  138. 138

    Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  139. 139

    Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002).

    CAS  PubMed  Google Scholar 

  140. 140

    Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    CAS  PubMed  Google Scholar 

  141. 141

    Kang, S., Bader, A. G. & Vogt, P. K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl Acad. Sci. USA 102, 802–807 (2005).

    CAS  PubMed  Google Scholar 

  142. 142

    Ikenoue, T. et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 65, 4562–4567 (2005). References 141 and 142 report that high-frequency mutations in p110α that are associated with human tumours are oncogenic in cultured cells.

    CAS  PubMed  Google Scholar 

  143. 143

    Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999).

    CAS  PubMed  Google Scholar 

  144. 144

    Byun, D. S. et al. Frequent monoallelic deletion of PTEN and its reciprocal association with PIK3CA amplification in gastric carcinoma. Int. J. Cancer 104, 318–327 (2003).

    CAS  PubMed  Google Scholar 

  145. 145

    Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    CAS  PubMed  Google Scholar 

  146. 146

    Kang, S., Bader, A. G., Zhao, L. & Vogt, P. K. Mutated PI 3-kinases: cancer targets on a silver platter. Cell Cycle 4, 578–581 (2005).

    CAS  PubMed  Google Scholar 

  147. 147

    Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18, 1379–1387 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  149. 149

    Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  150. 150

    Pao, W. et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  Google Scholar 

  151. 151

    Tsao, M. S. et al. Erlotinib in lung cancer — molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–144 (2005).

    CAS  PubMed  Google Scholar 

  152. 152

    Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    CAS  PubMed  Google Scholar 

  153. 153

    Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).

    CAS  PubMed  Google Scholar 

  154. 154

    Mocharla, V. P. et al. In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. Engl. 44, 116–120 (2004).

    PubMed  Google Scholar 

  155. 155

    Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    CAS  PubMed  Google Scholar 

  157. 157

    Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol. 5, 566–571 (2003).

    CAS  PubMed  Google Scholar 

  158. 158

    Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  159. 159

    Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol. 5, 578–581 (2003).

    CAS  PubMed  Google Scholar 

  160. 160

    Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  161. 161

    Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    CAS  PubMed  Google Scholar 

  162. 162

    Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 277, 27975–27981 (2002).

    CAS  PubMed  Google Scholar 

  163. 163

    Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Massion, P. P. et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am. J. Respir. Crit. Care Med. 170, 1088–1094 (2004).

    PubMed  Google Scholar 

  165. 165

    Pedrero, J. M. et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer 114, 242–248 (2005).

    CAS  PubMed  Google Scholar 

  166. 166

    Ma, Y. Y. et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739–2744 (2000).

    CAS  PubMed  Google Scholar 

  167. 167

    Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  168. 168

    Cheng, J. Q. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA 93, 3636–3641 (1996).

    CAS  PubMed  Google Scholar 

  169. 169

    Balsara, B. R. et al. Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis 25, 2053–2059 (2004).

    CAS  PubMed  Google Scholar 

  170. 170

    Min, Y. H. et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17, 995–997 (2003).

    CAS  PubMed  Google Scholar 

Download references


The work of the authors is supported by grants from the National Cancer Institute.

Author information



Corresponding author

Correspondence to Peter K. Vogt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


National Cancer Institute

Breast cancer

Colorectal cancer

Ovarian cancer

Pancreatic cancer







caspase 9




cyclin D1

cyclin D2




























Atlas of Genetics and Cytogenetics in Oncology and Haematology (PIK3CA)

Peter K. Vogt's homepage

The PI3K–PTEN–AKT signalling pathway



A protein domain, homologous to an equivalent domain in the SRC protein, that facilitates protein–protein interactions by binding to tyrosine-phosphorylated protein sequences.


A protein domain that was originally identified in the protein pleckstrin that forms a phospholipid-binding pocket and in particular binds to PIP3.


A group of antibiotics that are produced by various strains of Streptomyces and have a complex macrocyclic structure.


Class I RNA polymerases synthesize all ribosomal RNAs except the 5S ribosomal RNA; class III RNA polymerases transcribe transfer RNA genes and the gene that encodes the 5S ribosomal RNA.


The 5′ end of virtually all mRNAs is protected by a 'cap' with the chemical structure m7GpppN (where m7G represents 7-methylguanylate, p represents a phosphate group and N represents any base).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bader, A., Kang, S., Zhao, L. et al. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5, 921–929 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing