Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Colorectal cancer screening: prospects for molecular stool analysis

Key Points

  • Colorectal cancer (CRC) is amenable to screening: it has a recognizable early stage and a defined natural history; surgical treatment of malignancy is effective; and pre-malignant lesions can be removed if detected. However, it is not yet clear whether screening should target early cancers or pre-malignant adenomas.

  • Current screening tests either detect the presence of blood in stool (faecal occult blood testing) or identify gross abnormalities (for example, flexible sigmoidoscopy and colonoscopy). All current tests are limited in patient acceptability and/or effectiveness.

  • There are prospects for new screening tests based on increased understanding of the biology and natural history of CRC. There is considerable interest in stool testing, which is non-invasive; does not require bowel preparation; potentially enables screening of the entire length of the colon and rectum; and produces specimens that are transportable.

  • One category of stool test involves detecting cells or cell contents in stool, for which colonocytes are likely to be a better target than blood. Biomarkers such as minichromosome maintenance proteins could indicate the presence of CRC cells in stool and/or facilitate the identification of such cells following colonocyte isolation.

  • An alternative approach involves testing for abnormal DNA in stool, using target genes identified as being abnormal in the colorectal adenoma–carcinoma sequence. Individual DNA tests generally have high specificity but low sensitivity, so multitarget DNA assays have been developed.

  • Large-scale evaluation of candidate tests, either singly or in combination, is now required. Of particular value would be randomized controlled trials showing a reduction in CRC incidence and/or mortality in the tested individuals.

  • An effective screening strategy would produce extra health-care provision costs, although these would be balanced by a reduced requirement to treat patients with established CRC. 'Halo effects' of an effective screening test would produce benefits for patients with symptomatic CRC as well as the screened population.

Abstract

Colorectal cancer is common. As many patients present with advanced disease, an effective screening test would have substantial clinical benefits. Recent progress in understanding the biology of colorectal cancer (and of cancer cells in general) has led to possible new approaches to screening. In particular, there are prospects of developing tests based on analysis of stool, which promise improved accuracy, safety, affordability and patient compliance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The site distribution of colorectal cancer in England and Wales between 1971 and 1994.
Figure 2: The colorectal adenoma–carcinoma sequence.

Similar content being viewed by others

References

  1. Parkin, D. M. Global cancer statistics in the year 2000. Lancet Oncol. 2, 533–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hayne, D. et al. Current trends in colorectal cancer: site, incidence, mortality and survival in England and Wales. Clin. Oncol. (R. Coll. Radiol.) 13, 448–452 (2001).

    CAS  Google Scholar 

  3. Mamazza, J. & Gordon, P. H. The changing distribution of large intestinal cancer. Dis. Colon Rectum 25, 558–562 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. McCallion, K. et al. Flexible sigmoidoscopy and the changing distribution of colorectal cancer: implications for screening. Gut 48, 522–525 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cucino, C., Buchner, A. M. & Sonnenberg, A. Continued rightward shift of colorectal cancer Dis. Colon Rectum 45, 1035–1040 (2002).

    Article  PubMed  Google Scholar 

  6. Cooper, G. S., Yuan, S., Landefeld, C. S., Johanson, J. F. & Rimm, A. A. A national population-based study of colorectal cancer and age: implications for screening in older Americans. Cancer 75, 775–781 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Rabeneck, L., Davila, J. A. & El-Serag, H. B. Is there a true 'shift' to the right colon in the incidence of colorectal cancer? Am. J. Gastroenterol. 98, 1400–1409 (2003).

    PubMed  Google Scholar 

  8. Morson, B. C. Evolution of cancer of the colon and rectum. Cancer 34 (Suppl.), 845–849 (1974).

    Article  Google Scholar 

  9. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Kinzler, K. W. & Vogelstein B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kozuka, S., Nogaki, M., Ozeki, T. & Masumori, S. Premalignancy of the mucosal polyp in the large intestine: II. Estimation of the periods required for malignant transformation of mucosal polyps. Dis. Colon Rectum 18, 494–500 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. O'Brien, M. J. et al. The National Polyp Study. Patient and polyp characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology 98, 371–379 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Kudo, S., Kashida, H. & Tamura, T. Early colorectal cancer: flat or depressed type. J. Gastroenterol. Hepatol. 15 (Suppl.), D66–D70 (2000).

    Article  PubMed  Google Scholar 

  14. Umetani, N. et al. Involvement of APC and K-ras mutation in non-polypoid colorectal tumorigenesis. Br. J. Cancer 82, 9–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Hirota, S. et al. p53 immunoreactive stain and early colorectal adenocarcinomas. Eur. J. Cancer 31A, 2220–2222 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Wada, R. et al. Histopathological studies of superficial-type early colorectal carcinoma. Cancer 77, 44–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Chung, D. C. & Rustgi, A. K. DNA mismatch repair and cancer. Gastroenterology 109, 1685–1699 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Frayling, I. M. Microsatellite instability. Gut 45, 1–4 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rhodes, J. M. Colorectal cancer screening in the UK: joint position statement by the British Society of Gastroenterology, the Royal College of Physicians, and the Association of Coloproctology of Great Britain and Ireland. Gut 46, 746–748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baldwin, P., Laskey, R. & Coleman, N. Translational approaches to improve cervical screening. Nature Rev. Cancer 3, 217–226 (2003).

    Article  CAS  Google Scholar 

  22. Winawer, S. et al. Gastrointestinal Consortium Panel. Colorectal cancer screening and surveillance: clinical guidelines and rationale—update based on new evidence. Gastroenterology 124, 544–560 (2003).

    Article  PubMed  Google Scholar 

  23. Newcomb, P. A., Norfleet, R. G., Storer, B. E., Surawicz, T. S. & Marcus, P. M. Screening sigmoidoscopy and colorectal cancer mortality. J. Natl Cancer Inst. 84, 1572–1575 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Selby, J. V., Friedman, G. D., Quesenberry, C. P. Jr. & Weiss, N. S. A case-control study of screening sigmoidoscopy and mortality from colorectal cancer. N. Engl. J. Med. 326, 653–657 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Muller, A. D. & Sonnenberg, A. Prevention of colorectal cancer by flexible sigmoidoscopy and polypectomy. A case-control study of 32,702 veterans. Ann. Intern. Med. 123, 904–910 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Newcomb, P. A., Storer, B. E., Morimoto, L. M., Templeton, A. & Potter, J. D. Long-term efficacy of sigmoidoscopy in the reduction of colorectal cancer incidence. J. Natl Cancer Inst. 95, 622–625 (2003).

    Article  PubMed  Google Scholar 

  27. Pickhardt, P. J. et al. Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N. Engl. J. Med. 349, 2191–2200 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Luboldt, W. et al. Computer-aided diagnosis in contrast-enhanced CT colonography: an approach based on contrast. Eur. Radiol. 12, 2236–2241 (2002).

    Article  PubMed  Google Scholar 

  29. Ahlquist, D. A., McGill, D. B., Schwartz., S., Taylor, W. F. & Owen, R. A. Fecal blood levels in health and disease. N. Engl. J. Med. 312, 1422–1428 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Young, G. P. & St. John, D. J. Selecting an occult blood test for use as a screening tool for large bowel cancer. Front. Gastrointest. Res. 18, 135–156 (1991).

    Article  CAS  Google Scholar 

  31. Macrae, F. A. & St. John, D. J. Relationship between patterns of bleeding and Haemoccult sensitivity in patients with colorectal cancers or adenomas. Gastroenterology 82, 891–898 (1982).

    CAS  PubMed  Google Scholar 

  32. Ahlquist, D. A. et al. Patterns of occult bleeding in asymptomatic colorectal cancer. Cancer 63, 1826–1830 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Mandel, J. S. et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N. Engl. J. Med. 328, 1365–1371 (1993). The first published randomized trial to show a reduction in mortality from CRC following FOBT screening.

    Article  CAS  PubMed  Google Scholar 

  34. Mandel, J. S., Church, T. R., Ederer, F. & Bond, J. H. Colorectal cancer mortality: effectiveness of biennial screening for fecal occult blood. J. Natl Cancer Inst. 91, 434–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kronborg, O., Fenger, C., Olsen J., Jorgensen, O. D. & Sondergaard, O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet 348, 1467–1471 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen, O. D., Kronborg, O. & Fenger, C. A randomised study of screening for colorectal cancer using faecal occult blood testing: results after 13 years and seven biennial screening rounds. Gut 50, 29–32 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardcastle, J. D. et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 348, 1472–1477 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Mandel, J. S. et al. The effect of fecal occult-blood screening on the incidence of colorectal cancer. N. Engl. J. Med. 343, 1603–1607 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Towler, B. P., Irwig, L., Glasziou, P., Weller, D. & Kewenter, J. Screening for colorectal cancer using the faecal occult blood test, Hemoccult. Cochrane Database Syst. Rev. 2, CD001216 (1998).

    Google Scholar 

  40. Cole, S. R. & Young, G. P. Effect of dietary restriction on participation in faecal occult blood test screening for colorectal cancer. Med. J. Aust. 175, 195–198 (2001).

    CAS  PubMed  Google Scholar 

  41. Young, G. P. et al. Prescreening evaluation of a brush-based faecal immunochemical test for haemoglobin. J. Med. Screen. 10, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Cole, S. R., Young, G. P., Esterman, A., Cadd, B. & Morcom, J. A randomised trial of the impact of new faecal haemoglobin test technologies on population participation in screening for colorectal cancer. J. Med. Screen. 10, 117–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Nakajima, M. et al. Prevention of advanced colorectal cancer by screening using the immunochemical faecal occult blood test: a case-control study. Br. J. Cancer 89, 23–28 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilbert, J. A. et al. Fecal marker variability in colorectal cancer: calprotectin versus hemoglobin. Scand. J. Gastroenterol. 31, 1001–1005 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Johne, B., Kronberg, O., Ton, H. I., Kristinsson, J. & Fuglerud, P. A new fecal calprotectin test for colorectal neoplasia. Scand. J. Gastroenterol. 3, 291–296 (2001).

    Article  Google Scholar 

  46. Limburg, P. J. et al. Prospective evaluation of fecal calprotectin as a screening biomarker for colorectal neoplasia. Am. J. Gastroenterol. 98, 2299–2305 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hoff, G. et al. Testing for calprotectin (PhiCal) in the Norwegian Colorectal Cancer Prevention trial on flexible sigmoidoscopy screening: comparison with an immunochemical test for occult blood (FlexSure OBT). Gut 53, 1329–1333 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moran, A., Radley, S., Neoptolemos, J., Jones, A. F. & Asquith, P. Detection of colorectal cancer by faecal α1-antitrypsin. Ann. Clin. Biochem. 30, 28–33 (1993).

    Article  PubMed  Google Scholar 

  49. Nakayama, T., Yasuoka, H., Kishino, T., Ohguchi, H. & Takada M. ELISA for occult faecal albumin. Lancet I, 1368–1369 (1987).

    Article  Google Scholar 

  50. Miyoshi, H., Ohshiba, S., Asada, S., Hirata, I. & Uchida K. Immunological determination of fecal hemoglobin and transferring levels: a comparison with other fecal occult blood tests. Am. J. Gastroenterol. 87, 67–73 (1992).

    CAS  PubMed  Google Scholar 

  51. Dubrow, R., Kinm, C. S. & Eldred, A. K. Fecal lysozyme: an unreliable marker for colorectal cancer. Am. J. Gastroenterol. 87, 617–621 (1992).

    CAS  PubMed  Google Scholar 

  52. Ahlquist, D. A. & Shuber, A. P. Stool screening for colorectal cancer: evolution from occult blood to molecular markers. Clin. Chim. Acta 315, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bader, G. & Papanicolaou, G. The application of cytology in the diagnosis of cancer of the rectum, sigmoid, and descending colon. Cancer 5, 307–314 (1952).

    Article  CAS  PubMed  Google Scholar 

  54. Lipkin, M., Bell, B. & Sherlock, P. Cell proliferation kinetics in the gastrointestinal tract of man. I. Cell renewal in colon and rectum. J. Clin. Invest. 42, 767–776 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahlquist, D. A., Harrington, J. J., Burgart, L. J. & Roche, P. C. Morphometric analysis of the 'mucocellular layer' overlying colorectal cancer and normal mucosa: relevance to exfoliation and stool screening. Hum. Pathol. 31, 51–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Loktionov, A. et al. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. Clin. Cancer Res. 4, 337–342 (1998).

    CAS  PubMed  Google Scholar 

  57. Bandaletova, T., Bailey, N., Bingham, S. A. & Loktionov, A. Isolation of exfoliated colonocytes from human stool as a new technique for colonic cytology. APMIS 110, 239–246 (2002).

    Article  PubMed  Google Scholar 

  58. Davies, R. J. et al. Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet 359, 1917–1919 (2002). In this paper, we demonstrated that markers of exfoliated cancer cells can accurately be detected in stool.

    Article  CAS  PubMed  Google Scholar 

  59. Moldenhauer, G., Momburg, F., Moller, P., Schwartz, R. & Hammerling, G. J. Epithelium-specific surface glycoprotein of Mr 34,000 is a widely distributed human carcinoma marker. Br. J. Cancer 56, 714–721 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gonzalez, M. A., Tachibana, K. E., Laskey, R. A. & Coleman, N. Control of DNA replication and its potential clinical exploitation. Nature Rev. Cancer 5, 135–141 (2005).

    Article  CAS  Google Scholar 

  61. Ishibashi, K., Hirose, K., Kato, H., Ogawa, K. & Haga, S. Determining the telomerase activity of exfoliated cells in intestinal lavage solution to detect colorectal carcinoma. Anticancer Res. 19, 2831–2836 (1999).

    CAS  PubMed  Google Scholar 

  62. Luo, C., Zhao, D. & Qu, J. Telomerase activity in stool of patients with colorectal cancer. Zhonghua Wai Ke Za Zhi 39, 580–582 (2001).

    CAS  PubMed  Google Scholar 

  63. Yokoyama, S. et al. The potential role of fecal carbonic anhydrase II in screening for colorectal cancer. Am. Surg. 63, 243–246 (1997).

    CAS  PubMed  Google Scholar 

  64. Hardt, P. D. et al. Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br. J. Cancer 91, 980–984 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mizuno, M. et al. Testing of multiple samples increases the sensitivity of stool decay-accelerating factor test for detection of colorectal cancer. Am. J. Gastroenterol. 98, 2550–2555 (2003).

    Article  PubMed  Google Scholar 

  66. Kim, Y. et al. Gastrointestinal tract cancer screening using fecal carcinoembryonic antigen. Ann. Clin. Lab. Sci. 33, 32–38 (2003).

    PubMed  Google Scholar 

  67. Machiels, B. et al. New protocol for DNA extraction of stool. Biotechniques 28, 286–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Deuter, R., Pietsch, S., Hertel, S. & Muller, O. A method for preparation of fecal DNA suitable for PCR. Nucleic Acids Res. 23, 3800–3801 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andreyev, H. J., Norman, A. R., Cunningham, D., Oates, J. R. & Clarke, P. A. Kirsten ras mutations in patients with colorectal cancer: the multicenter 'RASCAL' study. J. Natl Cancer Inst. 90, 675–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Sidransky, D. et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 256, 102–105 (1992). The first study to demonstrate that mutations can be detected in the stool of patients with CRC.

    Article  CAS  PubMed  Google Scholar 

  71. Frattini, M., Balestra, D., Pilotti, S., Bertario, L., Pierotti, M. A. Tumor location and detection of k-ras mutations in stool from colorectal cancer patients. J. Natl Cancer Inst. 95, 72–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Eguchi, S., Kohara, N., Komuta, K. & Kanematsu T. Mutations of the p53 gene in the stool of patients with resectable colorectal cancer. Cancer 77 (Suppl. 8), 1707–1710 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Lu, X., Xu, T., Qian, J., Wen, X. & Wu, D. Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin. Med. J. 115, 1632–1636 (2002).

    CAS  PubMed  Google Scholar 

  74. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Fearnhead, N. S., Britton, M. P. & Bodmer, W. F. The ABC of APC. Hum. Mol. Genet. 10, 721–733 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Traverso, G. et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N. Engl. J. Med. 346, 311–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Boland, C. R. Molecular genetics of hereditary nonpolyposis colorectal cancer. Ann. NY Acad. Sci. 910, 50–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Issa, J. P. CpG island methylator phenotype in cancer. Nature Rev. Cancer 4, 988–993 (2004).

    Article  CAS  Google Scholar 

  79. Traverso, G. et al. Detection of proximal colorectal cancers through analysis of faecal DNA. Lancet 359, 403–404 (2002). Demonstrated that proximal CRCs can be detected using stool DNA analysis.

    Article  CAS  PubMed  Google Scholar 

  80. Bedi, A, et al. Inhibition of apoptosis during delopment of colorectal cancer. Cancer Res. 55, 1811–1816 (1995).

    CAS  PubMed  Google Scholar 

  81. Boynton, K. A., Summerhayes, I. C., Ahlquist, D. A. & Shuber, A. P. DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin. Chem. 49, 1058–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Ahlquist, D. A. et al. Novel use of hypermethylated DNA markers in stool for detection of colorectal cancer: a feasibility study. Gastroenterology 122, A40 (2002).

    Google Scholar 

  83. Suzuki, H. et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genet. 31, 141–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Muller, H. M. et al. Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 363, 1283–1285 (2004).

    Article  PubMed  CAS  Google Scholar 

  85. Brand, R. E., Ross, M. E. & Shuber, A. P. Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection. Am. J. Gastroenterol. 99, 1338–1341 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Imperiale, T. F. et al. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med. 351, 2704–2714 (2004). A detailed assessment of the performance of stool DNA testing in 2,507 average-risk asymptomatic individuals.

    Article  CAS  PubMed  Google Scholar 

  87. Schoen, R. E. Interrupting the adenoma-carcinoma sequence: screening for adenomas and cancer, now and in the future. Semin. Gastrointest. Dis. 11, 219–228 (2000).

    CAS  PubMed  Google Scholar 

  88. Steele, R. J. C. et al. A demonstration pilot trial for colorectal cancer screening in the United Kingdom: a new concept in the introduction of healthcare strategies. J. Med. Screen. 8, 197–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Dukes, C. E. The classification of cancer of the rectum. J. Pathol. Bacteriol. 35, 323–332 (1932).

    Article  Google Scholar 

  90. Whittaker, M. & Goligher, J. C. The prognosis after surgical treatment for carcinoma of the rectum. Br. J. Surg. 63, 384–388 (1976).

    Article  CAS  PubMed  Google Scholar 

  91. Lieberman, D. A. & Weiss, D. G. One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N. Engl. J. Med. 345, 555–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. UK Flexible Sigmoidoscopy Screening Trial Investigators. Single flexible sigmoidoscopy screening to prevent colorectal cancer: baseline findings of a UK multicentre trial. Lancet 359, 1291–1299 (2002).

  93. Segnan, N. et al. Baseline findings of the Italian multicenter randomised controlled trial of 'once-only flexible sigmoidoscopy'—SCORE. J. Natl Cancer Inst. 94, 1763–1772 (2002).

    Article  PubMed  Google Scholar 

  94. Citarda, F. et al. Efficacy in standard clinical practice of colonoscopic polypectomy in reducing colorectal cancer incidence. Gut 48, 812–815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Winawer, S. J. et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N. Engl. J. Med. 329, 1977–1981 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Johnson, C. D. et al. Prospective blinded evaluation of computed tomographic colonography for screen detection of colorectal polyps. Gastroenterology 125, 311–319 (2003).

    Article  PubMed  Google Scholar 

  97. Kamar, M. et al. Actual colonic perforation in virtual colonoscopy: report of a case. Dis. Colon Rectum 47, 1242–1246 (2004).

    Article  PubMed  Google Scholar 

  98. Coady-Fariborzian, L., Angel, L. P. & Procaccino, J. A. Perforated colon secondary to virtual colonoscopy: report of a case. Dis. Colon Rectum 47, 1247–1249 (2004).

    Article  PubMed  Google Scholar 

  99. Fidler, J. L. et al. Detection of flat lesions in the colon with CT colonography. Abdom. Imaging 27, 292–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Tagore, K. S. et al. Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin. Colorectal Cancer 3, 47–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ahlquist, D. A. et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119, 1219–1227 (2000). The first study to report the use of a multitarget DNA assay for molecular stool screening.

    Article  CAS  PubMed  Google Scholar 

  102. Rengucci, C. et al. Multiple detection of genetic alterations in tumors and stool. Clin. Cancer Res. 7, 590–593 (2001).

    CAS  PubMed  Google Scholar 

  103. Dong, S. M. et al. Detecting colorectal cancer in stool with the use of multiple genetic targets. J. Natl Cancer Inst. 93, 858–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Koshiji, M., Yonekura, Y., Saito, T. & Yoshioka, K. Microsatellite analysis of fecal DNA for colorectal cancer detection. J. Surg. Oncol. 80, 34–40 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Coleman.

Ethics declarations

Competing interests

Nicholas Coleman is entitled to a share of royalties received by Cancer Research Technology Ltd on sales of products related to the use of MCM detection in cancer diagnosis.

Related links

Related links

DATABASES

Entrez Gene

APC

BRAF

CDKN2A

KRAS

MGMT

MLH1

MSH2

MSH3

MSH6

MYC

PMS1

PMS2

SFRP2

SMAD2

SMAD4

TP53

National Cancer Institute

colorectal cancer

OMIM

familial adenomatous polyposis

hereditary non-polyposis colorectal cancer

FURTHER INFORMATION

American Cancer Society

Cancer Research and Prevention Foundation

Colon Cancer Concern

English Colorectal Cancer Screening Pilot

Exact Sciences web page on PreGen-Plus

Exact Sciences

NCI study on the detection of colorectal cancer

Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

UK National Screening Committee

Glossary

FLEXIBLE SIGMOIDOSCOPE

A flexible fibre-optic instrument inserted through the anus, which enables direct visual examination of the lining of the rectum and distal colon.

SPECIFICITY

The likelihood that a test is negative in the absence of disease.

CASE–CONTROL STUDY

A study in which patients who already have a certain condition are compared with people who do not.

COHORT STUDY

A study in which patients who have a certain condition and/or receive a particular test or treatment are followed over time and compared with another group of patients who are not subject to the condition or intervention.

SENSITIVITY

The likelihood that a test is positive in the presence of disease.

COMPUTER TOMOGRAPHY

A diagnostic imaging technique that uses specialized X-ray equipment to obtain image data from different angles, followed by computer processing of the information to show a cross-section of tissues and organs.

GUAIAC TEST

Faecal occult blood test cards are impregnated with guaiac resin, obtained from the wood of Guaiacum officinale trees (which are native to central America and the Carribean). The cards are developed with a liquid hydrogen-peroxide solution that causes the guaiac to turn blue in the presence of the peroxidase-like enzymatic activity of haemoglobin.

DIVERTICULAR DISEASE

A condition in which pouches of mucosa and submucosa protrude through the wall of the colon, with the risk of mucosal ulceration and haemorrhage.

ENZYME-LINKED IMMUNOSORBENT ASSAY

An assay for immunological detection and quantitation of single or multiple antigens or antibodies in a biological sample.

ENTEROPATHY

Disease of the intestinal tract.

NON-STEROIDAL ANTI-INFLAMMATORY DRUGS

Prostaglandin inhibitors with anti-inflammatory and analgesic properties.

HUMAN EPITHELIAL ANTIGEN

An adhesion molecule, also known as Ep-CAM, that is broadly expressed by (and specific to) normal and neoplastic epithelial cells.

LIQUID-PHASE ASSAY

An assay carried out in solution, rather than on a solid support.

TELOMERASE

A ribonucleoprotein enzyme complex that stabilizes the length of chromosome telomeric ends by adding hexameric nucleotide repeats.

TELOMERIC REPEAT AMPLIFICATION PROTOCOL

A sensitive assay for measuring telomerase activity, in which telomerase products are generated and subsequently amplified by PCR.

DECAY-ACCELERATING FACTOR

An intrinsic cell membrane inhibitor of autologous complement attack.

SANDWICH ELISA

An ELISA variant in which antigen is captured between two layers of antibodies.

CARCINOEMBRYONIC ANTIGEN

An immunoglobulin supergene family glycoprotein that is normally only present during fetal development, but can be re-expressed by certain malignancies, including colorectal cancer.

SINGLE-STRAND CONFORMATION POLYMORPHISM

A method for detecting single base changes in genes, based on differences in the secondary structure of single-stranded DNA molecules causing an alteration of mobility in non-denaturing gel electrophoresis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, R., Miller, R. & Coleman, N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer 5, 199–209 (2005). https://doi.org/10.1038/nrc1569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing