Cancer nanotechnology: opportunities and challenges

Key Points

  • Nanotechnology concerns the study of devices that are themselves or have essential components in the 1–1,000 nm dimensional range (that is, from a few atoms to subcellular size).

  • Two main subfields of nanotechnology are nanovectors — for the administration of targeted therapeutic and imaging moieties — and the precise patterning of surfaces.

  • Nanotechnology is no stranger to oncology: liposomes are early examples of cancer nanotherapeutics, and nanoscale-targeted magnetic resonance imaging contrast agents illustrate the application of nanotechnology to diagnostics.

  • Photolithography is a light-directed surface-patterning method, which is the technological foundation of microarrays and the surface-enhanced laser desorption/ionization time-of-flight approach to proteomics. Nanoscale resolution is now possible with photolithography, and will give rise to instruments that can pack a much greater density of information than current biochips.

  • The ability of nanotechnology to yield advances in early detection, diagnostics, prognostics and the selection of therapeutic strategies is predicated based on its ability to 'multiplex' — that is, to detect a broad multiplicity of molecular signals and biomarkers in real time. Prime examples of multiplexing detection nanotechnologies are arrays of nanocantilevers, nanowires and nanotubes.

  • Multifunctionality is the fundamental advantage of nanovectors for the cancer-specific delivery of therapeutic and imaging agents. Primary functionalities include the avoidance of biobarriers and biomarker-based targeting, and the reporting of therapeutic efficacy.

  • Thousands of nanovectors are currently under study. By systematically combining them with preferred therapeutic and biological targeting moieties it might be possible to obtain a very large number of novel, personalized therapeutic agents.

  • Novel mathematical models are needed, in order to secure the full import of nanotechnology into oncology.


Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Multifunctional nanoparticle.
Figure 2: Nanotechnologies for molecular detection, identification and diagnostics.
Figure 3: Nanowires and nanocantilevers.
Figure 4: Multicomponent targeting strategies.
Figure 5: A vision for a future multistage nanodevice with multiple-barrier-avoidance capability.


  1. 1

    Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  PubMed  Google Scholar 

  2. 2

    Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003). The definitive, state-of-the-art review of polymer technology for drug-delivery application. This paper is so exhaustive that we chose not to focus on polymer nanotechnology in our review.

    CAS  Article  Google Scholar 

  3. 3

    Li, K. C. P., Pandit, S. D., Guccione, S., Bednarski, M. D. Molecular imaging applications in nanomedicine. Biomed. Microdevices 6, 113–116 (2004).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Drug Discov. 2, 750–763 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Jain, R. K. The next frontier of molecular medicine: delivery of therapeutics. Nature Med. 4, 655–657 (1998).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Srinivas, P. R., Barker, P. & Srivastava, S. Nanotechnology in early detection of cancer. Lab. Invest. 82, 657–662 (2002).

    PubMed  Article  Google Scholar 

  7. 7

    Park, J. W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4, 95–99 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R. & Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63, 8122–8125 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Neuwalt, E. A. et al. Imaging of iron oxide nanoparticles with MR and light microscopy in patients with malignant brain tumors. Neuropathol. Appl. Neurobiol. 30, 456–471 (2004).

    Article  CAS  Google Scholar 

  10. 10

    Nam, J. M. & Mirkin, C. A. Bio-barcode-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933 (2004). A window into the power of nanotechnology to potentially revolutionize molecular diagnostics.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Whitesides, G. M. The 'right' size in nanotechnology. Nature Biotechnol. 21, 1161–1165 (2003). An introduction to bionanotechnology with emphasis on the identification of its niche applications for basic research.

    CAS  Article  Google Scholar 

  12. 12

    La Van, D. A., McGuire, T. & Langer R. Small-scale systems for in vivo drug delivery. Nature Biotechnol. 21, 1184–1191 (2003). Whether 'nano' or 'micro' is irrelevant, as long as actual medical problems are solved.

    CAS  Article  Google Scholar 

  13. 13

    Pirollo, K. F. et al. in Vector Targeting for Therapeutic Gene Delivery (eds Curiel, D.T. & Douglas, J. T.) 33–62 (Wiley and Sons, New York 2002).

    Google Scholar 

  14. 14

    Gilles, E. M. & Frechet, J. M. J. Designing macromolecules for therapeutic applications: Polyester dendrimer-polyethylene oxide 'bow-tie' hybrids with tunable molecular weights and architecture. J. Am. Chem. Soc. 124, 14137–14146 (2002).

    Article  CAS  Google Scholar 

  15. 15

    Oyewumi, M. O. & Mumper, R. J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J.Control. Rel. 95, 613–626 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Schellenberger, E. A. et al. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol. Imaging 1, 102–107 (2002).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Harishingani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003). A powerful illustration that for certain applications nanotechnology might be the only way to secure in vivo diagnostic information.

    Article  Google Scholar 

  18. 18

    Winter, P. M., Lanza, G. M. & Wickline, S. A. Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108, 2270–2274 (2003).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Perez, J. M., Josephson, L. & Weissleder, R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125, 10192–10193 (2003).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Zhang, Y. & Shang, M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed. Microdevices 6, 33–40 (2004).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Yan, F., Kopelman, R. & Reddy, R. Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J. Nanosci. Nanotechnol. 4, 72–76 (2004).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Levy, L., Bergey E. J. & Prasad, P. N. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 14, 3715–3721 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Bergey, E. J. & Prasad, P. N. DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro. Biomed. Microdevices 4, 293–299 (2002).

    CAS  Article  Google Scholar 

  24. 24

    May, D. J., Allen, J. S. & Ferrara, K. W. Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1400–1410 (2002).

    PubMed  Article  Google Scholar 

  25. 25

    Bloch, S. H., Wan, M., Dayton, P. A. & Ferrara, K. W. Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84, 631–633 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Sullivan, D. & Ferrari, M. Nanotechnology and tumor imaging: seizing an opportunity. Mol. Imaging (in the press).

  27. 27

    Nashat, A. H., Moronne, M. & Ferrari, M. Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy. Biotechnol. Bioeng. 60, 137–146 (1998).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. Non-specific interaction of nanoparticles as drug delivery and nanoharvesting agents within the vasculature. Ann. Biomed. Eng. (in the press). Mathematical models drive the design of nanovectors for optimal use in therapeutics and diagnostics.

  29. 29

    Netti, P. A. et al. Time-dependent behaviour of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55, 5451–5458 (1995).

    CAS  PubMed  Google Scholar 

  30. 30

    Klibanov, A. L. et al. Activity of amphipathic PEG 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavourable for immunoliposome binding to target. Biochem. Biophys. Acta 1062, 142–148 (1991).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Alivisatos, P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Chan, W. C. & Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Voura, E. B., Jaiswal J. K. Mattoussi, H. & Simon, S. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10, 993–998 (2004).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Kataoka, K. et al. Block copolymers micelles as vehicles. J. Control Release 24, 119–132 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Tomalia, D. A. et al. A new class of polymers: starburst-dendritic macromolecules. Polymer J. 17, 117–132 (1985).

    CAS  Article  Google Scholar 

  37. 37

    Kobayashi, H., Choyke, P. L., Brechbiel, M. W. & Waldmann, T. A. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl Cancer Inst. 96, 703–708 (2004).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Ferrari, M. Therapeutic microdevices and methods of making and using same. US Patent 6,107,102 (2000). Early investigation of multifunctional drug-delivery nanosystems.

  39. 39

    Cohen, M. H., Melnik K., Boiasrki A., Ferrari, M. & Martin, F. J. Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed. Microdevices 5, 253–259 (2003).

    CAS  Article  Google Scholar 

  40. 40

    He, X. X. & Li, J. Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 125, 7168–7169 (2003).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Yan, F. & Kopelman, R. The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem. Photobiol. 78, 587–591 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Li, X. et al. Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed. Microdevices 2, 265–273 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Hirsch, L. R., Halas, N. J. & West, J. L. A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Hirsch, L. R., Halas, N. J. & West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003). A powerful illustration of the use of remote activation as a therapeutic targeting strategy.

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Fodor, S. E. et al. Light-directed spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991). The foundations of microarray technology.

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Demers, L. M. et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Lee, K. B. et al. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Lee, K. B. & Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Bruckbauer, A. & Klenerman, D. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 126, 6508–6509 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Rosenblatt, K. P. et al. Serum proteomics in cancer diagnosis and management. Annu. Rev. Med. 55, 97–112 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Geho, D., Lahar, N., Ferrari, M., Petricoin, E. & Liotta, L. Opportunities for nanotechnology-based innovation in tissue proteomics. Biomed. Microdevices 6, 231–239 (2004).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Merchant, M. & Weinberger, S. R. Recent advancements in surface-enhanced laser desorption-ionization time-of-flight spectrometry. Electrophoresis 21, 1164–1177 (2000).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Hansen, K. M. et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73, 1567–1571 (2001).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    CAS  Article  Google Scholar 

  55. 55

    Su, M., Li, S. & Dravid, V. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82, 3562–62 (2003).

    CAS  Article  Google Scholar 

  56. 56

    Chen, H., Han J., Li, J. & Meyyappan, M. Microelectronic DNA assay for the detection of BRCA1 gene mutations. Biomed. Microdevices 6, 55–60 (2004).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Cui, Y., Qingqiao W., Hongkun, P. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Heath, J. R., Phelps, M. E. & Hood, L. NanoSystems biology. Mol. Imaging Biol. 5, 312–325 (2003). Nanotechnology presented as the gateway for the transition from reductionist to systems biology.

    PubMed  Article  Google Scholar 

  59. 59

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–18 (1991).

    CAS  Article  Google Scholar 

  60. 60

    Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Star, A. et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Engl. 40, 1721–1725 (2001).

    CAS  Article  Google Scholar 

  62. 62

    Chen, R. J. & Hongjie, D. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Woolley, A. et al. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nature Biotech. 18, 760–764 (2000).

    CAS  Article  Google Scholar 

  64. 64

    Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003). References 64 and 65 describe microfluidics, from its firm establishment in biomedical research to current day concepts.

    CAS  Article  Google Scholar 

  66. 66

    Chu, W. H., Chin, R., Huen, T. & Ferrari, M. Silicon membrane nanofilters from sacrificial oxide removal. J. Microelectromech. Syst. 8, 16–25 (1999).

    Google Scholar 

  67. 67

    Desai, T. A. et al. Nanopore technology for biomedical applications. Biomed. Microdevices 2, 1–40 (1999).

    Google Scholar 

  68. 68

    Sinha, P., Valco, G., Sharma, S., Liu, X. & Ferrari, M. Nanoengineered device for drug delivery application. Nanotechnology 15, S585–S589 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Martin, F. J. et al. Tailoring width of microfabricated nano-channels to solute size can be used to control diffusion kinetics. J. Control. Release (in the press).

  71. 71

    Desai, T. A. et al. Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed. Microdevices 1, 131–181 (1999).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Meller, A. & Branton, D. Single molecule measurement of DNA transport through a nanopore. Electrophoresis 23, 2583–2591 (2002).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Hayflick, L. Mortality and immortality at the cellular level. Biochemistry 62, 1180–1190 (1997).

    CAS  PubMed  Google Scholar 

  74. 74

    Grimm, J., Perez, J. M., Josephson, L. & Weissleder, R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64, 639–643 (2004).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Sipkins, D. A. et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Med. 4, 623–626 (1998).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Anderson, S. A., Wickline, S. A. & Kotyk, J. J. Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles. Magn. Reson. Med. 44, 433–439 (2000).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Winter, P. M., Wickline, S. A. & Lanza, G. M. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 63, 5838–5843 (2003).

    CAS  PubMed  Google Scholar 

  80. 80

    Morawski, A. M., Lanza, G. M. & Wickline, S. A. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med. 51, 480–486 (2004).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Desai, T. A., Hansford, D. J., Leoni, L., Essenpreis, M. & Ferrari, M. Nanoporous anti-fouling silicon membranes for implantable biosensor applications. Biosens. Bioelectron. 15, 453–462 (2000).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Fritz, J., et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Majumdar, A. Bioassays based on molecular nanomechanics. Dis. Markers 18, 167–174 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Yue, M. A 2-D microcantilever array for multiplexed biomolecular analysis. J. Microelectromech. Syst. 13, 290–299 (2004).

    CAS  Article  Google Scholar 

  85. 85

    Li, J. et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3, 597–602 (2003).

    CAS  Article  Google Scholar 

  86. 86

    Ferrari, M. & Weber, M. E. Determination of eigenstresses from curvature data. Smart Materials and Materials Fabrication and Materials for MEMS. MRS Bull. 276, 221–227 (1992).

    Article  Google Scholar 

  87. 87

    Santra, S. & Tan, W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988–4993 (2001).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Zhao X. & Tan, W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11474–11475 (2003).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Wu, X. & Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    CAS  Article  Google Scholar 

  90. 90

    Jaiswal, J. K. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21, 47–51 (2003).

    CAS  Article  Google Scholar 

  91. 91

    Clark, H. A. & Kopelman, R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem. 71, 4831–4836 (1999).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Clark, H. A., Kopelman, R. & Philbert, M. A. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal. Chem. 71, 4837–4843 (1999).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Liotta, L. A., Ferrari, M. & Petricoin, E. Clinical proteomics: written in blood. Nature, 425, 905 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Lavrik, N. V., Tipple, C. A., Sepaniak, M. J. & Datskos, P. G. Gold nano-structures for transduction of bimolecular interactions into micrometer-scale movements. Biomed. Microdevices 3, 35–41 (2001).

    CAS  Article  Google Scholar 

  95. 95

    Matsumura, Y. & Maeda H. A new concept for macromolecular therapies in cancer chemotherapy: mechanisms of tumortropic accumulation of proteins and the antitumor agents SMANCS. Cancer Res. 6, 6397–6392 (1986).

    Google Scholar 

  96. 96

    Sel, Y. N. et al. Comparison of vascular permeability and enzymatic activation of the polymeric prodrug HPMA copolymer–doxorubicin (PK1) in human tumor xenografts. Proc. Am. Assoc. Cancer Res. 90, 41 (1999).

    Google Scholar 

  97. 97

    Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001). This paper sets the stage for advanced, multifunctional therapeutic delivery systems.

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Decuzzi, P., Lee, S., Decuzzi, M. & Ferrari, M. Adhesion of micro-fabricated particles on vascular endothelium: a parametric analysis. Ann. Biomed. Eng. 32, 793–802 (2004).

    PubMed  Article  Google Scholar 

  99. 99

    Quintana, A. & Baker, J. N. Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19, 1310–1316 (2002).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Santhakumaran, L. M. & Thomas, T. J. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res. 32, 2102–2112 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Li, L. & Knox, S. J. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int. J. Oncol. Biol. Phys. 58, 115–122 (2004).

    Google Scholar 

  102. 102

    Martin, F. J. & Grove, C. Microfabricated drug delivery systems: concepts to improve clinical benefits. Biomed. Microdevices 3, 97–101 (2001).

    CAS  Article  Google Scholar 

  103. 103

    Tkachenko, A. G. & Feldheim, D. L. Multifunctional gold nanoparticle–peptide complexes for nuclear targeting. J. Am. Chem. Soc. 125, 4700–4701 (2003).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Roy, I., Bergey E. J. & Prasad, P. N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 125, 7860–7865 (2003).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    O'Neal, D. P., Halas, N. J. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Liu, J. & Wooley, K. L. Nanostructured materials designed for cell binding and transduction. Biomacromolecules 2, 362–368 (2001).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Potineni, A., Langer, R. & Amiji, M. M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release 86, 223–234 (2003).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Juliano, R. L. & Stamp, D. Effect of particle size and charge on the clearance rates of liposomes and liposome-encapsulated drugs. Biochem. Biophys. Res. Commun. 63, 651–658 (1975).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Dellian, M. et al. Vascular permeability in a human tumor xenograft: molecular charge dependence. Br. J. Cancer 82, 1513–1518 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Sinek, J., Frieboes, H., Zheng, X. & Cristini, V. Two dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Biomed. Microdevices 6, 297–309 (2004).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Bi-Botti, C. Y. Chronopharmaceutics: gimmick or clinically relevant approach to drug-delivery? J. Control. Release 98, 337–353 (2004).

    Article  CAS  Google Scholar 

  113. 113

    Lesinski, G. et al. Release of biologically functional interferon-α from a nanochannel delivery system. Biomed. Microdevices 6, 297–309 (2004).

    Article  Google Scholar 

  114. 114

    Desai, T. A. & Ferrari, M. Microfabricated immunoisolating biocapsules. Biotechnol. Bioeng. 57, 118–120 (1998).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Bergers, G. & Hanahan, D. Cell factories for fighting cancer. Nature Biotechnol. 19, 20–21 (2001).

    CAS  Article  Google Scholar 

  116. 116

    Steiniger, S. C. & Gelperina, S. E. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 109, 759–767 (2004).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Lockman, P. R. & Allen, D. D. Nanoparticle technology for drug deliver across the blood–brain barrier. Drug Dev. Ind. Pharm. 28, 1–13 (2002).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Lockman, P. R. & Allen, D. D. Brain uptake of thiamine-coated nanoparticles. J. Control. Release 93, 271–282 (2003).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Koziara, J. M., Allen, D. D. & Mumper, R. J. In situ blood–brain barrier transport of nanoparticles. Pharm. Res. 20, 1772–1778 (2003).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Wu, J., Akaka, T. & Maeda, H. Modulation of enhanced permeability in tumor by a bradykinine antagonist, a cyclooxygenase inhibitor. Cancer Res. 58, 159–165 (1998).

    CAS  PubMed  Google Scholar 

  121. 121

    Chen, H., Tochilin, V. & Langer, R. Lecting-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378–1383 (1996).

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Tao, S. L., Lubeley, M. W. & Desai, T. A. Bioadhesive polymethyl methacrylate microdevices for controlled drug delivery. J. Control Rel. 88, 215–228 (2003).

    CAS  Article  Google Scholar 

  123. 123

    Ferrari, M. et al. Particles for oral delivery of peptides and proteins. US Patent 6,355,270 (2002).

  124. 124

    Lee, S. et al. Recognition properties of antibodies to PAMAM dendrimers and their use in immune detection of dendrimers. Biomed. Microdevices 3, 53–59 (2001).

    CAS  Article  Google Scholar 

  125. 125

    Lee, S. C. et al. Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed. Microdevices 6, 191–202 (2004).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Sartinoranont, M., Rooney, F. J. & Ferrari, M. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31, 327–335 (2003).

    Article  Google Scholar 

  127. 127

    Qi, K. & Wooley, K. L. Determination of the bioavailability of biotin conjugated onto shell cross-linked (SCK) nanoparticles. J. Am. Chem. Soc. 126, 6599–6607 (2004).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Higgins, J. P. & Reed, R. A. Spectroscopic approach for on-line monitoring of particle size during the processing of pharmaceutical nanoparticles. Anal. Chem. 75, 1777–1785 (2003).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Brocchini, S. & Duncan, R. in Encyclopedia of Controlled Drug Delivery (ed. Maliniowitz, E.) 786–816 (Wiley, New York, 1999).

    Google Scholar 

  130. 130

    Al Mehdi, A. B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med. 6, 100–102 (2000).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contribution to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  132. 132

    Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Wang, W. et al. Single cell behaviour in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278–6288 (2002).

    CAS  PubMed  Google Scholar 

Download references


The author is indebted to A. Barker, R. Duncan, L. Hartwell, L. Liotta, R. Smalley, A. von Eschenbach and S. Venuta for discussions and recommendations. The assistance in the literature review by J. Alper, M. Chang, M. Merlo, J. Sakamoto and P. Sinha is gratefully acknowledged. Support for this work was provided by The Ohio State University College of Medicine and Public Health, the National Cancer Institute's Office of Technology and Industrial Relations, and the State of Ohio's Biomedical Research and Technology Transfer programme.

Author information



Ethics declarations

Competing interests

Through his patents, the author has a financial interest in research presented in references 27, 38–39, 51, 66–68, 70, 71, 81, 114 and 123. iMEDD Inc. of Foster City, California, posseses commercial rights on several of the author's patents. The author is a shareholder, consultant and Chair of the Scientific Advisory Board of iMEDD Inc. He is Editor in Chief of the archival journal Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology.

Related links

Related links


Entrez Gene






National Cancer Institute

breast cancer

Kaposi's sarcoma


ovarian cancer

prostate cancer



National Cancer Institute Alliance for Nanotechnology in Cancer

National Nanotechnology Initiative



A hollow or solid structure, with diameter in the 1–1,000 nanometre range, which can be filled with anticancer drugs and detection agents. Targeting moieties can also be attached to the surface. Nanovectors can be used for targeted gene therapy.


A type of nanovector made of lipids surrounding a water core.


A solid nanovector, typically made of a single material.


A system composed of monocytes and macrophages that is located in reticular connective tissue (for example, in the spleen). These cells are responsible for phagocytosing and removing cellular debris, pathogens and foreign substances from the bloodstream.


A nanoparticle composed of a gold shell surrounding a semiconductor. When nanoshells reach their target they can be irradiated to make the nanoshell hot — the heat kills the cancer cell.


Flexible beams, resembling a row of diving boards, that can be coated with molecules capable of binding to cancer biomarkers.


Nanoscale sensing wires that can be coated with molecules such as antibodies to bind to proteins of interest and transmit their information through electrodes to computers.


A nanoscale structure, composed of carbon atoms arranged in a specific soccer-ball-like architecture. Fullerenes are a form of carbon (C-60), which also forms nanotubes.


Cylinder-like assemblies of carbon atoms, with cross-sectional dimensions in the nanometre range, and lengths that can extend over a thousand times their diameters.


Cross-species, therapeutic cell transplants.


A surgical approach for the assessment of the metastatic involvement of lymph nodes. It is based on the hypothesis that if the node that is nearest to a tumour is negative, the others along the same pattern of spread will also be negative.


Semiconductor particles with an inert polymer coating. The material used for the core can be chosen depending on the emission wavelength range being targeted. Targeting molecules can be attached to the coating.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5, 161–171 (2005).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing